

Chinmaya Forms Framework

Chinmaya Forms Framework (CFF) is a system that allows for management of forms, accounts, and payment integration. With CFF, you can:

	Manage forms

	Create forms using JSON Schema [https://json-schema.org/]

	Export responses

	Associate accounts with responses

	Integrate with PayPal and CCAvenue

CFF has been used for events such as:

	Walkathons

	Balavihar Registration

	Camp Registration

	Information Collection Forms

	Donation Forms

Documentation structure

	Form Management - how to share forms and manage responses as a form admin.

	Form Editing - how to configure and edit forms by modifying the JSON options for a form.

	Using the API - information about integrating with the CFF REST API to use data in your own apps

	Development on CFF - information about development on the CFF codebase, contributing guidelines, and setup instructions

Useful links

	GitHub repository: https://github.com/epicfaace

	Documentation site: http://docs.chinmayamission.com/cff/

	Production instance: https://forms.chinmayamission.com

	Beta instance: https://forms.beta.chinmayamission.com

Development

See Development on CFF for more information.

Learning links

If you need help to understand forms development / React development you can go to these links:

https://react-jsonschema-form.readthedocs.io/en/latest/

https://reacttraining.com/

Index

 You can use the CFF API to access resources from another client, such as an app.

Make sure you include the Authorization header to all requests. The Authorization header needs a valid JWT for authenticated routes; for unauthenticated routes, the header can have any arbitrary value (but it needs to have some value).

The list of examples on this page are not exhaustive; for a full list of available API routes, see lambda/chalicelib/main.py [https://github.com/epicfaace/CFF/blob/master/lambda/chalicelib/main.py].

API endpoints

The regular API endpoint for production is https://xpqeqfjgwd.execute-api.us-east-1.amazonaws.com.

The regular API endpoint for beta is https://5fd3dqj2dc.execute-api.us-east-1.amazonaws.com.

If you are frequently doing a resource-intensive response fetching / aggregation query, we would encourage that you use the CloudFront endpoint instead of the regular API endpoint for production. This endpoint automatically has a caching layer that will make it faster to use our API and reduce load on our servers: https://drcfbob84gx1k.cloudfront.net.

Creating a new response

Request:

let body = {
 data: {
 name: "New Name",
 email: "New Email",
 date: "1995-01-03"
 }
}
fetch("https://xpqeqfjgwd.execute-api.us-east-1.amazonaws.com/v2/forms/5d368b0692a26900015e6391", {
 method: 'post',
 body: JSON.stringify(body),
 mode: 'cors',
 headers: {"Authorization": "anonymous", "Content-Type": "application/json"}
}).then(e => console.log(e));

Getting response data

Request:

fetch("https://xpqeqfjgwd.execute-api.us-east-1.amazonaws.com/v2/responses/5d368bf392a26900015e6392", {
 method: 'get',
 mode: 'cors',
 headers: {"Authorization": "anonymous"}
}).then(e => console.log(e));

Response – note that the data you need is in the value key:

{
 "success": true,
 "res": {
 "_id": {
 "$oid": "5d368bf392a26900015e6392"
 },
 "form": {
 "$oid": "5d368b0692a26900015e6391"
 },
 "paymentInfo": {
 "items": [],
 "currency": "USD",
 "total": 0
 },
 "paid": true,
 "amount_paid": "0",
 "value": {
 "name": "Ashwin",
 "email": "a@b.com",
 "date": "2019-07-10"
 },
 "date_created": {
 "$date": "2019-07-23T04:24:19.777Z"
 },
 "date_modified": {
 "$date": "2019-07-23T04:24:19.777Z"
 },
 "modify_link": "https://forms.chinmayamission.com/v2/forms/5d368b0692a26900015e6391/?responseId=5d368bf392a26900015e6392",
 "counter": null
 }
}

Editing response data

Request:

let body = {
 data: {
 name: "New Name",
 email: "New Email",
 date: "1995-01-03"
 },
 responseId: "5d368bf392a26900015e6392"
}
fetch("https://xpqeqfjgwd.execute-api.us-east-1.amazonaws.com/v2/forms/5d368b0692a26900015e6391", {
 method: 'post',
 body: JSON.stringify(body),
 mode: 'cors',
 headers: {"Authorization": "anonymous", "Content-Type": "application/json"}
}).then(e => console.log(e));

 Sometimes, it is useful to provision API keys so that an external website can access form responses or aggregate statistics without needing to log in.

For an example of this in action, see the 2020 Sanjeevan Hanuman website [https://sanjeevan-hanuman-followers.chinmayamission.com/].

Provide anonymous access

To provide anonymous access to all responses in a form, use the formOptions.responseListApiKey parameter. To generate the api key value to set, use this code in Python:

import uuid
import hashlib
api_key = str(uuid.uuid4())
encoded_api_key = hashlib.sha512(api_key.encode()).hexdigest()
print("api key is ", api_key, "encoded api key is ", encoded_api_key)

Then provide the api key to the user using the form, and set formOptions.responseListApiKey to the encoded api key.

{
 "responseListApiKey": "[encoded api key]"
}

Then, someone can access the form responses by calling https://drcfbob84gx1k.cloudfront.net/v2/forms/[formId]/responses?apiKey=[apiKey]. Sample JS code (note that a dummy value must be included in the Authorization header):

fetch("https://drcfbob84gx1k.cloudfront.net/v2/forms/.../responses?dataOptionView=summary&apiKey=...", {headers: {"Authorization": "a"}});

Use api key per dataOptionView

If you want to give anonymous access only to a particular dataOptionView (so that, for example, you only publicly expose certain statistics), set the apiKey value in the dataOptionView.

"dataOptions": {
 "views": [
 {
 "id": "testview",
 "name": "test view",
 "apiKey": "[encoded api key]"
 }
]
}

Then, someone can access the form responses by calling https://drcfbob84gx1k.cloudfront.net/v2/forms/[formId]/responses?dataOptionView=[dataOptionViewId]&apiKey=[apiKey].

 This guide explains how to set up API access so that certain fields can be searched in a form.

Configure API key

First, run the below code in Python to generate an API key:

import uuid
import hashlib
api_key = str(uuid.uuid4())
encoded_api_key = hashlib.sha512(api_key.encode()).hexdigest()
print("api key is ", api_key, "encoded api key is ", encoded_api_key)

Note down the API key, and set formOptions.responseListApiKey to the value of the encoded api key.

{
 "responseListApiKey": "[encoded api key]"
}

Configure search

Configure formOptions.dataOptions.search with the following:

{
 "search": {
 "searchFields": [...], // ["_id"] by default
 "resultFields": [...], // ["_id"] by default
 "resultLimit": ... // 10 by default
 }
}

You should set searchFields to which fields will be searched, and resultFields to which fields can be returned. resultLimit returns the fields that are returned.

Note that you must prepend fields in the form data with value. – for example, to reference the email field, you must enter in value.email. Here is an example configuration that allows searching of a single user by email, then returns that user’s name and email:

{
 "search": {
 "searchFields": ["value.email"],
 "resultFields": ["value.name", "value.email"],
 "resultLimit": 1,
 "exactMatch": true
 }
}

Note that setting exactMatch to true can significantly speed up query performance by requiring that the specified field(s) match exactly the given query. By default, the fields are searched with a regex that ensure that the specified fields only begin with the given query.

Performing the search

Then, to perform the search, add the search term in the query parameter in the query string, and include the API key in the apiKey query parameter. Every call to the search API must also set the Authorization header to any value, such as a. Here is an example of a proper request to search the API:

fetch("https://xpqeqfjgwd.execute-api.us-east-1.amazonaws.com/v2/forms/5b47419b666d2c0001263a8b/responses?apiKey=ee5737bc-e55a-48e2-a907-0a9cc2a00ade&query=a", {headers: {"Authorization": "a"}}).then(e => console.log(e));

Note that anyone with this API key will not only be able to search the fields specified, but will also be able to view all responses if they omit the query parameter in the URL.

 We have successfully integrated the CFF API in several different use cases:

	2020 - Sanjeevan Hanuman Chanting [https://sanjeevan-hanuman-followers.chinmayamission.com/] - used the CFF API to get the total number of times the Hanuman Chalisa was chanted, then created a graph and visualization to track this in real time.
[image: ../_images/hanuman.png]hanuman

	2020 - Ramdoot Brick Sponsorship [https://forms.chinmayamission.com/v2/forms/5ea8ad2b86ce4600016db83b/] - used the CFF API to get the number of sponsored bricks real-time, then fill out a graphic based on that.
[image: ../_images/ramdoot.png]ramdoot

Overall architecture

For the overall architecture and deployment strategy of CFF, see this presentation: 5/7/2020 CFF Architecture [https://docs.google.com/presentation/d/1GY1DQ-FMA0csgVdcEmmiKMHBP_markR6dAHMIEGaeGI/edit].

For a general (but slightly outdated) introduction to CFF, see this presentation: 7/27/19 CCMT CFF Forms Framework Introduction [https://docs.google.com/presentation/d/1AjL3-Th-Bhgyo-nFbnZ406J2brBBEpqqGjMWoYTyUiE/edit]

Design docs

6/25/18 - CFF V2 software architecture [https://docs.google.com/document/d/18oJ5jSho8CmZCC8xc4oGmvaaKOJRxd51bZ-O2nK3Pfo/edit]

3/22/18 - CFF Permissions Proposal [https://docs.google.com/presentation/d/1h-2uZBKkz_FsQxSCvbn3La8KOesjKbSHbpa9uuMpJT4/edit#slide=id.p]

 !!! note
These are some advanced setup notes that are useful for running the backend code locally. For the usual process of running and developing on the backend, see the Development Overview.

Pre-populating local database with fixtures

First make sure npm run mongo is running in another command prompt window.

In another terminal, run npm run import to pre-populate the database with the fixtures.

Updating fixtures

If you want to update the default database import file, run npm run fixtures and commit the fixtures to source control.

Running prod code locally

Notes:

cd ../.. && npm run build && cd scripts/beta && cp index.undefined.html index.html && serve -s

Setting up PDF code

PDF generation only works on Linux. To get this to work, first run the following:

cd lambda
npm run install-deps

This will add the wkhtmltopdf binary to chalicelib/bin so that it is available for python-pdfkit.
This step is automatically run before deployment.

Setting up email sending on development

To set up local email settings (or to configure the local mongodb url), you need to configure SMTP credentials through a .env file. Run:

cp sample.env .env

Then edit .env and enter in the appropriate SMTP credentials.

General contribution flow

	Make a fork of https://github.com/epicfaace/CFF/.

	Create your own branch with the new changes.

	Make a pull request to the main repository.

	Once the pull request is approved, it will be merged into master.

Git and VS Code tutorial

	Open the CFF project using Visual Studio Code.
[image: https://user-images.githubusercontent.com/29865785/55114563-a55c3980-50b8-11e9-99ba-b5e86d7eeaff.png]image

	Select the file you want to make changes to:
[image: https://user-images.githubusercontent.com/29865785/55114578-b2792880-50b8-11e9-81d9-22d839304437.png]image

	Make sure you are currently on the “master” branch. Click on the “sync” icon to pull the latest changes from master on GitHub to your local repository.
[image: https://user-images.githubusercontent.com/29865785/55114605-c3c23500-50b8-11e9-8d03-ce3f70699f4b.png]image

	Create a new branch for the functionality you are about to code and give it a descriptive name (for example, “NewButtonAdd”).
[image: https://user-images.githubusercontent.com/29865785/55114664-f3713d00-50b8-11e9-96a6-62f9157589de.png]image

	Make sure you have switched to the new branch that you just created before making the code changes.
[image: https://user-images.githubusercontent.com/29865785/55114722-17348300-50b9-11e9-990f-037c88fdb893.png]image

	Once you make the changes, the pending changes will show up in the VS Code window. Click on the “Commit changes” icon (check mark). This saves the changes to the local branch.
[image: https://user-images.githubusercontent.com/29865785/55114826-5f53a580-50b9-11e9-87f4-f42a77518895.png]image

	Click on the “Publish Changes” icon at the bottom. This creates a new branch in GitHub and publishes your changes to it. You can also select the “…” button and select the “Push” menu to push the code to GitHub.
[image: https://user-images.githubusercontent.com/29865785/55114893-89a56300-50b9-11e9-91f2-a087fb0d69fa.png]image

	Create a new pull request from the GitHub repository to the master branch. Choose two branches to see what’s changed or to start a new pull request.
[image: https://user-images.githubusercontent.com/29865785/55115276-8363b680-50ba-11e9-9607-1b334621e7dd.png]image

	Add screenshots/details of the changes to the new pull request and send it for approval.

	Once another developer approves the request, you can merge the pull request to Master so the changes will show up in Master
[image: https://user-images.githubusercontent.com/29865785/55115558-29172580-50bb-11e9-9145-8d6efaeef2a9.png]image
[image: https://user-images.githubusercontent.com/29865785/55115634-5b288780-50bb-11e9-9df2-222deb199907.png]image

	Remember to delete the branch in Github once the changes are merged to master.

	The final step is make sure you go back to the master branch in the VS Code project and sync it so that the changes show up on your local version of master.

Deployment prerequisites

Deployment is automatically done via Azure Pipelines. However, if you need to deploy code manually, you must install:

	the AWS CLI. Make sure you configure the CLI with AWS credentials that have access to the AWS production environment.

	the Serverless framework. You can do npm i -g serverless to install it.

Automatic deployment

Beta

Beta deployment is automatically done via GitHub Actions whenever a commit is pushed to the master branch. Our beta environment is hosted at https://forms.beta.chinmayamission.com.

To deploy to beta, either merge a PR into master or push a commit to master to trigger the GitHub Actions pipeline.

Prod

Production deployment is automatically done via Github Actions whenever a new version of CFF is released (when a new tag is pushed to master). Our production environment is hosted at https://forms.chinmayamission.com.

To deploy to prod, first update CHANGELOG.md with the latest changes. Then run the following:

git checkout master
git pull origin master
npm version patch
git push --tags origin master

If the version is major / minor, you can run npm run major or npm run minor. Follow the guidelines from semver [https://semver.org/] to determine which type of version bump this should be.

Finally, create a new release on the latest tagged version (such as v6.0.0) from this webpage: https://github.com/Chinmayamission/CFF/releases. This will start the GitHub Actions pipeline to release the latest version to prod.

Manual deployment steps

Follow these steps in case GitHub Actions is not working.

Beta

Manual steps for deployment:

Deploy documentation
npm run deploy-docs
Deploy frontend
npm run deploy
Deploy Google Sheets lambda function
npm run deploy-sheets
cd lambda
Deploy REST API lambda functions
npm run deploy

Prod

Deploy documentation
npm run deploy-docs
Deploy frontend
npm run deploy-prod
Deploy Google Sheets lambda function
npm run deploy-prod-sheets
cd lambda
Deploy REST API lambda functions
npm run deploy-prod

Logs

Here are some production logs that are useful to check on:

	The lambda execution logs, which contain all Python logs / exceptions from the REST API, are available at https://console.aws.amazon.com/cloudwatch/home?region=us-east-1#logsV2:log-groups/log-group/$252Faws$252Flambda$252Fccmt-cff-api-v2-prod [https://console.aws.amazon.com/cloudwatch/home?region=us-east-1#logsV2:log-groups/log-group/%24252Faws%24252Flambda%24252Fccmt-cff-api-v2-prod]

	The API Gateway execution logs, which contains request and response bodies for every HTTP request, are available at https://console.aws.amazon.com/cloudwatch/home?region=us-east-1#logsV2:log-groups/log-group/API-Gateway-Execution-Logs_xpqeqfjgwd$252Fv2 [https://console.aws.amazon.com/cloudwatch/home?region=us-east-1#logsV2:log-groups/log-group/API-Gateway-Execution-Logs_xpqeqfjgwd%24252Fv2]

	These logs are good for debugging issues such as “500 Errors” or IPN errors.

	For beta:

	Lambda execution logs: https://us-east-1.console.aws.amazon.com/cloudwatch/home?region=us-east-1#logsV2:log-groups/log-group/$252Faws$252Flambda$252Fccmt-cff-api-v2-beta [https://us-east-1.console.aws.amazon.com/cloudwatch/home?region=us-east-1#logsV2:log-groups/log-group/%24252Faws%24252Flambda%24252Fccmt-cff-api-v2-beta]

	API Gateway execution logs: https://us-east-1.console.aws.amazon.com/cloudwatch/home?region=us-east-1#logsV2:log-groups/log-group/API-Gateway-Execution-Logs_5fd3dqj2dc$252Fv2 [https://us-east-1.console.aws.amazon.com/cloudwatch/home?region=us-east-1#logsV2:log-groups/log-group/API-Gateway-Execution-Logs_5fd3dqj2dc%24252Fv2]

Deployment infrastructure details

Google Sheets

Google Sheets syncing of form responses is done with the following service accounts:

cff-beta@ccmt-accounts.iam.gserviceaccount.com - credentials stored in the SSM variable CFF_GOOGLE_SHEETS_KEY_BETA
cff-prod@ccmt-accounts.iam.gserviceaccount.com - credentials stored in the SSM variable CFF_GOOGLE_SHEETS_KEY_PROD

These service accounts are stored in the ccmt-accounts GCP project, which itops.ccmt@chinmayamission.com has access to.

Troubleshooting steps

Verify email

Sometimes, if a user’s email is unverified, they may not be able to reset their password and they may get an error, “Cannot reset password for the user as there is no registered/verified email or phone_number.” To fix this, you should manually verify their email address by running:

aws cognito-idp admin-update-user-attributes --user-pool-id us-east-1_kcpcLxLzn --username [cognito user id] --user-attributes Name="email_verified",Value="true"

Getting started with CFF development

Install prerequisites

To run CFF locally, you first need to install the following prerequisites:

	Git [https://git-scm.com/downloads]

	Node js [https://nodejs.org/en/download/]

	Python 3.9+ [https://www.python.org/downloads/]

	MongoDB [https://docs.mongodb.com/manual/installation/]

Clone code

The first step is to clone the git repository with the latest code locally. This repository contains both frontend and backend code.

git clone https://github.com/epicfaace/CFF.git
cd CFF

Directory structure

	docs - contains documentation files

	scripts/src - contains frontend React code

	scripts/src/__tests__ - contains tests for frontend React code

	scripts/backend - contains Google Sheets syncing lambda function

	lambda and lambda/chalicelib - contains main REST API (backend) code

	lambda/tests - contains REST API tests

Develop frontend

To develop on the frontend, you can run the following commands from the CFF directory:

npm install
npm start

You need to run npm install only once (or whenever dependencies are updated in package.json or package-lock.json in future runs). npm start actually starts the development server.

By default, the frontend will use the beta deployed API as the backend, so there’s no need to run the backend when developing the frontend locally.

You can open http://localhost:8000 to view a live-reloading version of CFF in your own browser.

Develop backend

To develop on the REST API, go to the lambda directory. We use pipenv to manage dependencies.

cd lambda
pip install pipenv
pipenv install

You need to run pipenv install only once (or whenever dependencies are updated in Pipfile or Pipfile.lock in future runs).

You can run the backend locally by following these steps:

	Run npm run mongo in one terminal so that a local database is running.

	Run npm start in another terminal.

This will run the backend at http://localhost:8001. Note that you may not be able to access endpoints without the right headers, though, so you might need to use a tool such as Postman to test out the endpoints.

Most of work done on the backend can be verified by re-running the tests. To run the tests, do the following:

	Run npm run mongo in one terminal so that a local database is running.

	Run npm test in another terminal.

Develop docs

To develop the docs locally, first install mkdocs and the mkdocs-material theme:

pip install -r requirements-docs.txt
mkdocs serve

Running this command will serve the docs at http://localhost:8000 in your browser.

Contribution process

For the general contribution process, see the Contribution process section.

 Chinmaya Forms Framework Architecture: [https://docs.google.com/presentation/d/1AjL3-Th-Bhgyo-nFbnZ406J2brBBEpqqGjMWoYTyUiE/edit#slide=id.p]
[image: https://user-images.githubusercontent.com/29865785/55113031-73e16f00-50b4-11e9-889d-5ac6d3ed0da7.png]image

 Responses store data in two keys: value and admin_info. value is owned by the user; admin_info is owned by the admin. Both are viewable by anyone with view permission to the response, though.

Only users with the permission Responses_AdminInfo_Edit can modify admin info. They can modify admin info by going to .

(Upcoming release, not added yet:) formOptions.adminInfo.schema and formOptions.adminInfo.uiSchema describe the schema and uiSchema for the admin info. These are used to render a form in the response detail, in a tab called “Admin Info”.

 Used in Om Run 2019.
Have to use paymentInfo.total because CosmosDB doesn’t support the string-to-int operators introduced in MongoDB 4.0.

{
 "id": "aggregate_collections",
 "aggregate": [
 {
 "|match": {
 "paid": true
 }
 },
 {
 "|group": {
 "_id": null,
 "donation": {
 "|sum": "$value.additionalDonation"
 },
 "totalPaid": {
 "|sum": "$paymentInfo.total"
 }
 }
 }
]
 }

 Conditional hidden radio widget is used in order to hide a widget conditionally whenever the readonly and const attribute in the schema is set.

Use case (MSC 2020) - don’t show the above checkbox such as
[image: https://user-images.githubusercontent.com/1689183/59546627-d5f88600-8ee5-11e9-945a-699b4fd642d5.png]image

We just need to show the label, not the actual radio box.

To use, use:

"ui:widget": "cff:conditionalHiddenRadio"

	User fills in data and submits.
[image: https://user-images.githubusercontent.com/1689183/55590180-069e9100-56e7-11e9-8f71-48121f44a2e8.png]image

	User gets a confirmation email
[image: https://user-images.githubusercontent.com/1689183/55590655-5893e680-56e8-11e9-9151-e7995769ca4c.png]image

	Admin goes to form response. Click on the link to reply.
[image: https://user-images.githubusercontent.com/1689183/55590206-17e79d80-56e7-11e9-920e-d77d9b4cc60f.png]image

	Admin enters feedback and click submit.
[image: https://user-images.githubusercontent.com/1689183/55590634-49149d80-56e8-11e9-9ee8-13158ecf1421.png]image

	User gets a second confirmation email with feedback.
[image: https://user-images.githubusercontent.com/1689183/55590670-6184b800-56e8-11e9-8dae-ff2b3dce74ac.png]image

 Add the “checkin” property to the form schema.

Add the following to dataOptions:

{
 "search": {
 "searchFields": [
 "_id",
 "value.contact_name.last",
 "value.contact_name.first",
 "value.email",
 "value.participants.name.first",
 "value.participants.name.last",
 "value.participants.bib_number"
],
 "resultFields": [
 "_id",
 "value.contact_name.last",
 "value.contact_name.first",
 "value.email",
 "value.participants"
],
 "autocompleteFields": [
 "value.contact_name.last",
 "value.contact_name.first"
],
 "resultLimit": 10
 }
}

 You can use our S3 bucket to upload images. This is useful if you need to upload images that go in a confirmation email or something, but do not want to upload the images to another image service.

	Log in to the gcmw-media bucket.

	Go to the cff.chinmayamission.com folder.

	Upload the image here.

	The image url is of the format: http://d1dyr7ljeznkdv.cloudfront.net/cff.chinmayamission.com/{image name}.

	For example, http://d1dyr7ljeznkdv.cloudfront.net/cff.chinmayamission.com/OmRunWide-2019.png.

 To enable form login, add the following to formOptions:

{
 "loginRequired": true
}

The behavior will be as follows:

	Each form will be associated with the user who filled it out.

	Only that user may fill out that form.

	Modify links will send the user to a login screen if they have not already logged in. User must be logged in as that repsonse’s owner to edit. (?)

Todo

	Fix bug - when going to a modify link, another user should be able to edit it.

 aws s3 sync s3://cff-uploads-prod cff-uploads-prod –profile=default

 Make a GET request to {API_ENDPOINT}/forms/{formId}/responses/?query=test

Only those with Responses_View or Responses_Checkin permissions can access this functionality.

Can configure the following in dataOptions:

{
 "search": {
 "searchFields": [...], // ["_id"] by default
 "resultFields": [...], // ["_id"] by default
 "resultLimit": ... // 10 by default
 }
}

 The sheets export is currently run as an hourly job. The code for this can be found in the ccmt-cff-client repository, in the scripts/backend folder. It is deployed as a lambda js function.

 <!--
encodeURIComponent(JSON.stringify({"required": ["company_name", "contact_name", "email", "email_secondary", "address", "customSponsorshipAmount"], "properties.customSponsorshipAmount.$ref": "#/definitions/customSponsorshipAmount" }))
"%7B%22required%22%3A%5B%22company_name%22%2C%22contact_name%22%2C%22email%22%2C%22email_secondary%22%2C%22address%22%2C%22customSponsorshipAmount%22%5D%2C%22properties.customSponsorshipAmount.%24ref%22%3A%22%23%2Fdefinitions%2FcustomSponsorshipAmount%22%7D"
-->
<iframe src="https://forms.chinmayamission.com/v2/forms/....?specifiedShowFields=%7B%22required%22%3A%5B%22company_name%22%2C%22contact_name%22%2C%22email%22%2C%22email_secondary%22%2C%22address%22%2C%22customSponsorshipAmount%22%5D%2C%22properties.customSponsorshipAmount.%24ref%22%3A%22%23%2Fdefinitions%2FcustomSponsorshipAmount%22%7D" style="width: 100%; height: 100vh"></iframe>

encodeURIComponent(JSON.stringify({"CFF_uiSchema.couponCode['ui:widget']": "text"}))

https://forms.beta.chinmayamission.com/v2/forms/5c99508834513d000161a237/?specifiedShowFields=%7B%22CFF_uiSchema.couponCode%5B'ui%3Awidget'%5D%22%3A%22text%22%7D

cff_createdBetween("2019-01-01T00:00:00.000Z", "2019-09-20T01:47:25.006Z")

You can override uiSchema by adding a “CFF_uiSchema.” prefix to specifiedShowFields.

For example,

 let uiSchema = {
 description: {
 "ui:widget": "hidden"
 },
 a: {
 b: {
 "ui:widget": "hidden"
 }
 }
 };
 let specifiedShowFields = {
 "CFF_uiSchema.description['ui:widget']": "textarea",
 "CFF_uiSchema.a.b['ui:widget']": "textarea"
 };

Gives you

 let expected = {
 description: {
 "ui:widget": "textarea"
 },
 a: {
 b: {
 "ui:widget": "textarea"
 }
 }
 };

Form Editing

All forms can be configured using JSON configuration options. You can edit three things in a form:

	schema - data structure of the form. This is rendered using JSON Schema [https://json-schema.org/].

	uiSchema - look and feel of the form. This is where you can configure CSS class names or custom widgets to be rendered on the form.

	formOptions - configures other options such as payment integration, responses view, form submission closing, confirmation emails, and more.

react-jsonschema-form

CFF uses the open source library react-jsonschema-form [https://github.com/rjsf-team/react-jsonschema-form] in order to render forms on the frontend. The schema and uiSchema configured for each form is directly passed to the <Form /> component from react-jsonschema-form.

CFF also has custom widgets and fields registered with react-jsonschema-form; these features can be enabled by passing configuration through the uiSchema. See the uiSchema introduction for an exhaustive list of all custom widgets and fields that can be enabled.

To see more demos about what can be created by combining different schemas and uiSchemas, see the examples at the react-jsonschema-form playground [https://rjsf-team.github.io/react-jsonschema-form/].

 You can add admin fields in order to create fields that are not visible for regular users of the form, but are visible to admins. Admin fields are automatically hidden for most users. They are only shown for users that have a Responses_Edit or owner permission to the form itself.

Let’s add an admin field called “comments”, which only admins can edit. First, add the field to formOptions.adminFields:

{
 "adminFields": ["comments"]
}

Then, add the “comments” field to the schema:

{
 "properties": {
 ...,
 "comments": {"type": "string"}
 }
}

Finally, add “comments” to the ui:order attribute of the uiSchema as well:

{
 "ui:order": [
 ...,
 "comments"
]
}

An admin can then view / edit a particular response from the response list, and they will see the “comments” field.

!!! warning
Admin fields are only hidden to the user on the frontend. However, there is currently no backend check that prevents regular users from modifying this field. Thus, don’t store any sensitive information in these fields, as this is a security flaw that allows any users to change this field with a specially crafted user request. It is always possible for non-admins to modify these fields.

 To close submissions, set the following values in formOptions to false: (both these attributes default to true):

{
 "responseSubmissionEnabled": false,
 "responseModificationEnabled": false
}

The user will then, upon viewing the form, see a message like this:

![form closed](img/form closed.png)

 You can give a numeric counter to each response as it gets added to the form. This is useful to create a “human-readable” numeric id that people can then see in their confirmation email and use to look responses up.

To do this, in formOptions add:

{
 "counter": {
 "enabled": true
 }
}

Then, the counter field on the response will be incremented, starting with 1 for the first response, etc. This field is assigned directly on the response (as opposed to on the response value), so it is stored independently of the form data or associated schema, and it is not editable by users or admins.

!!! note
The numbers are only assigned once upon response creation. If a response is deleted, then that number will be skipped.

Adding a counter to the response table

To add the counter to the response table, enter COUNTER in the header value and it will be added.

Adding a counter to a confirmation email

To add a counter to the confirmation email (or any jinja template), just use {{counter}} to display it.

 By default, users do not need to login to fill out forms. To set up user login for a form,
set formOptions.loginRequired to be equal to true:

{
 "loginRequired": true
}

General flow

When loginRequired is set to true:

	When going to the form link, users will be prompted to log in if they are not logged in already.

	When submitting the form, the user’s response will be associated with them.

	Each user can only submit one response per form. When the user goes back to the form, they will
be presented with their existing response, which they can then edit (if form editing is enabled).

Predicates

When a form has loginRequired set to true, the predicates feature can also be enabled to import
data from previous iterations of a particular form. See Predicates for more information.

 By default, a response has a field modify_link that is set to the original URL where the form is hosted, or if the form is hosted in an iframe, the parent’s URL. However, especially if the form is hosted on an iframe in another website’s domain, the modify_link may not properly give the entire path of the host website. To fix this, you can specify formOptions.modifyLink, which will set the modify_link of newly created responses to the configured link:

{
 "modifyLink": "https://forms.ashwin.run/form/123"
}

 The formOptions.omitExtraData property can be set to true. This sets the omitExtraData prop on the form, which causes extra form data values that are not in any form field will be removed upon submit. By default, this prop is set to false.

This is important when there are complex forms with dependencies, and you do not want extra data from unselected dependencies to show up. See the react-jsonschema-form reference [https://react-jsonschema-form.readthedocs.io/en/latest/api-reference/form-props/#omitextradata] for more details.

{
 "formOptions": {
 "omitExtraData": true
 }
}

 FormOptions is a JSON object that can be used to configure other aspects of the form, such as:

	Payment integration

	Confirmation email template configuration

	Whether a form is closed or not

 You can configure modifications to form data that is performed after a response is submitted by using the formOptions.postprocess option. This logic gets applied to the response two times:

	when a new response is submitted; and

	when a response is modified.

Example

"postprocess": {
 "patches": [
 {
 "type": "patch",
 "value": [
 { "op": "add", "path": "/installment1", "value": "2020-01-30" }
]
 }
]
}

Every item in the patches array is applied in order. Each item in the patches array must contain an object with type equal to patch, and the value key equal to a valid array in JSON Patch [http://jsonpatch.com/] format.

Using patches with payment expressions

If an item in the patches array has the expr property equal to true, this is a way to slightly extend JSON Patch with support for payment expressions in the value property.

For every item in the value array, the value property will first be evaluated as a payment expression with the current response, then will be set to this evaluated value. Finally, the entire array will be applied as a JSON Patch.

Here’s an example of doing a dynamic patch with an expression, which sets installment1 to today’s date:

"postprocess": {
 "patches": [
 {
 "type": "patch",
 "expr": true,
 "value": [
 { "op": "add", "path": "/installment1", "value": "cff_today()" }
]
 }
]
}

 The form predicates feature allows you to import data from responses in another form. Use cases for this feature include:

	CMA Marietta used CFF for 2018 Balavihar Registration, and wants to do the same for 2019 Balavihar Registration. However, they would like for existing users’ data to be imported, and for the grades to be bumped up one level.

	Sometimes some users might have made automatic “recurring payments” (such as Parivar) in the past through a previous form, which should automatically give them credit for the current year so they don’t have to pay for it.

CFF supports a limited version of this through formOptions.predicate property.

Simple usage

Just add the following to formOptions:

{
 "predicate": {
 "formId": "abcd"
 }
}

The formId is the ID of the “predicate form”, the form from which data needs to be imported. By default, the response that is owned by the current user from the predicate form is loaded; so this feature is currently only supported for forms that have loginRequired to true.

!!! note
Only responses that have status equal to PAID will be imported from a predicate; if the user has an unpaid response in the predicate form, it will not be imported.

You will also need to add the following to the predicate form’s formOptions:

"successor": {
 "formId": "[form id of the current from]"
}

This is required as a security precuation, so that any form cannot claim an arbitrary form as a “predicate” and thus access its data.

Customizing warning text

By default, when a new response is created with a predicate, the following warning shows up at the top of the page:

![imported warning](img/imported warning.png)

To customize this text, edit the predicate.warningText property.

"predicate": {
 "warningText": "Warning: you are submitting a form based on old information from a predicate form."
}

Applying patches

Sometimes you may want to modify the data to apply patches, such as promoting children up a grade. This is how you do so:

{
 "predicate": {
 "formId": "abcd",
 "patches": [{"unwind": "/participants", "type": "walk", "items": ["A","B","C"], "path": "/grade"}]
 }
}

predicate.patches - A list of patches to apply to the response. All the patches get sequentially applied to the form data.

Above is an example of a “walk” patch, which will transform each “grade” and walk it up by 1 (A -> B, B -> C, otherwise will stay the same). The “unwind” parameter applies this patch to every element in the participants array.

Other examples of patches

Sets the value at the returning_family path to true.

{
 "type": "patch",
 "value": [
 { "op": "add", "path": "/returning_family", "value": true }
]
}

Removes the grade property for all objects in the array children.

{
 "type": "patch",
 "unwind": "/children",
 "value": [
 { "op": "remove", "path": "/grade" }
]
}

 You can include arbitrary css as a “theme” for a form in formOptions.theme:

"theme": {
 "style": {
 "root": {
 "fontSize": 12,
 "fontFamily": "Times"
 }
 },
 "fonts": [
 {
 "font": "Open Sans",
 "weights": [400]
 }
],
 "sm": true
}

The sm property, when set to true, makes all the inputs sm.

The styles.root prop contains styles that will apply to the entire FormPage.

The fonts prop can have what is passed into react-google-font-loader [https://github.com/jakewtaylor/react-google-font-loader].

Raw CSS

If you need to include raw css, you can use the rootRaw property. The contents of this value will be added as a <style> tag on the form. For example, if you want to hide the form title in the read-only form display on the confirmation page, you can do the following:

"theme": {
 "style": {
 "rootRaw": ".ccmt-cff-Page-FormPage-readonly .ccmt-cff-Page-FormPage .ccmt-cff-form-title { display: none;}"
 }
}

Location of read-only form on confirmation page

By default, the read-only form shows up at the top of the form confirmation page. To change this, set the following flag:

"theme": {
 "confirmationPage": {
 "readOnlyFormLocation": "bottom"
 }
}

Form management

Form menu

Right-clicking on a form on the home page will show a drop-down menu with possible options to do on the form.

![form menu](img/form menu.png)

Here are the potential options:

	Edit: Allows you to edit the form schema, uiSchema, and formOptions. ![form edit](img/form edit.png)

	View: View the actual form.

	Responses: View form responses. ![form responses](img/form responses.png)

	Share: Modify sharing configuration of the form – add / remove people or add permissions. ![form share](img/form share.png)

	Duplicate: Duplicate the form.

	Delete: Delete the form.

Form creation

You can click on the “Manage -> Create form” option to create a new form.
![image](img/create form.png)

Duplicating a form

To duplicate an existing form, you can right-click the form and click on the “Duplicate” button to duplicate the form and rename the form to the one you would like to use. This action will duplicate all the form configuration (schema, uiSchema, and formOptions), but does not copy over the form responses from the previous form.

!!! note
Form creation / duplication is only available for users who have the “owner” on the main organization. This means that, practically, only admins can create forms. If you need to create a new form, please request your admin to create the form by emailing webmaster@chinmayamission.com.

 You can view responses by going to the “Response” page from a single form.

![form responses](img/form responses.png)

Switching views

At the top of the response page is a list of tabs that navigate to available response views. You can click on a tab to show the data represented for that particular view.

Exporting responsees

You can click the “Download CSV” button to download all responses in the current view as a CSV.

Response actions

Each row has an “Actions” tab with three buttons: View, Edit, and Inspect.

Viewing a response

Clicking on “View response” will bring you to a read-only version of the response in the form view. You can switch to editing the response by clicking on the “Edit” button at the top.

![view response](img/view response.png)

Editing a response

Clicking on “Edit response” allows you to modify the response. Note that if you edit a response and the user has already paid, they will automatically receive a confirmation email.

At the end of the form, a “submit options” section (only available to admins with access to edit responses) lets you select whether you would like to disable this behavior or not – if you select “no”, no confirmation email will be sent. If you select “yes”, a confirmation email will be sent only if the user has already paid.

![edit response](img/edit response.png)

Inspecting a response

Inspecting a response allows you to perform more advanced actions on the response such as sending confirmation emails, entering in payments, or deleting the response.

Adding payment history

When inspecting a response, you can add manual payments to the payment history. You can add new payment amounts; this is useful if you would like to use CFF to track manual payments such as cash or check payments.

![response payment](img/response payment.png)

!!!note
Make sure that each payment you enter has a unique ID.

If you select “Send confirmation email”, the user will also have a confirmation email sent to them once the new payment is added. By default, a confirmation email will not be sent once a payment is added.

If you would just like to resend a confirmation email without sending a payment, you can select “Send confirmation email” and then click on the “Send email without adding a payment” button.

!!!warning
As of now, payments cannot be deleted. If you need a payment to be deleted, consider either adding a payment with a negative amount to cancel out the previous payment, or contact mailto:webmaster@chinmayamission.com to have the payment removed.

Viewing / editing the response value

Click on “Response Value” to view the raw response value. Note that this response value is in a JSON format, and can have nested objects or arrays; this is the raw format of the response as it is actually stored in our system.

You can also directly edit fields by clicking on the green “edit” icon next to each field.

![response value](img/response value.png)

Deleting a response

You can delete a response from the “Actions” tab. Note that this action deletes the response forever, so be careful if you do decide to do this.

![response delete](img/response delete.png)

Response inspector (advanced)

Going to “Inspector (advanced)” lets you inspect the entire structure of the response entry that is stored in our system; this includes not only the raw response value, but information and logs about payments and other metadata. You may not need to use this, but this might be a good place for admins to debug something if there is an issue with the form.

![response inspector](img/response inspector.png)

 In the “Share” tab, you can enter an email address to share it with someone and also assign them permissions.

![form share](img/form share.png)

List of permissions

Here is a list of form permissions and what each one does:

Name	Description
———–	———–
owner	All permissions
Responses_View	View Responses
Responses_Edit	Edit a Response
Responses_Delete	Delete a Response
Responses_AddPayment	Add a payment to a response (which could or could not send a confirmation email)
Responses_SendEmail	Send a confirmation email (such as a receipt) to a response
Forms_Edit	Edit a form
Forms_PermissionsView	View permissions for a form
Forms_PermissionsEdit	Edit permissions for a form

TBD / upcoming permissions:

Name	Description
———–	———–
Responses_AdminInfo_Edit	Edit a Response’s AdminInfo
Responses_CheckIn	View response list, edit response values ending in “.checkin”
Responses_Export	Export Responses as CSV (not implemented on the client side yet)
Responses_ViewSummary	View Response Summary (not implemented yet)

Organizations

Organizations are a feature that allow you to restrict which users can perform certain tasks, which are not tied to a particular form. For example, you may want to restrict users from creating forms.

To do that, add an entry in the database with the following structure:

{
 "_cls": "chalicelib.models.Org",
 "name": "CCMT",
 "cff_permissions": {
 "[userId1]": {"Orgs_FormsCreate": true}
 }
}

This will allow only the user with id [userId1] to create forms. For now, there is only one organization – CCMT – in the database. More may be added later.

List of permissions that can be applied to an organization:

Name	Description
———–	———–
owner	All permissions (superuser)
Orgs_FormsCreate	Can create forms

Planned (TBD) permissions:

Name	Description
———–	———–
Forms_Delete	Delete forms
superuser	All permissions

 formOptions.messages can be used to override certain default messages. Here are the supported messages:

Modify title at top of confirmation page

formOptions.messages.confirmationPageTitle - used to override the title at the confirmation page, by default “Confirmation Page”.

Modify message at top of confirmation page

formOptions.messages.confirmationPageNoticeTop - used to override the message at the top with the yellow background, which is by default, “Please scroll down and review your registration details in order to continue.”

Modify text before payment buttons

For the confirmation page, you can modify the text that shows before the payment buttons with the formOptions.paymentInfo.description attribute.

paymentInfo.description can now be specified by a Jinja [http://jinja.pocoo.org/] template, as well.

Modify title above payment table

By default, the title above the payment table on the confirmation page says “Payment”. To override this, set the paymentInfo.paymentInfoTableTitle property.

{
 "paymentInfoTableTitle": "Payment Details"
}

 Forms can be integrated with payment methods. There are two JSON properties on formOptions that control payment:

	formOptions.paymentInfo - configures the actual payment calculation of the form. Based on the configuration specified in this field, you can configure how the final payment amounts are calculated based on form data, the payment currency, and more.

	formOptions.paymentMethods - configures the payment methods that the form is connected to. A form can be connected to a single payment method, multiple payment methods, or none.

General payment flow

Let us take this Om Run Training Form [https://forms.beta.chinmayamission.com/v2/forms/5b3f8b7a978a860001e276c3/] as an example.

The paymentInfo and paymentMethods are configured to be the following:

{
 "paymentInfo": {
 "currency": "USD",
 "redirectUrl": "http://omrun.cmsj.org/training-thankyou/",
 "items": [
 {
 "name": "2019 CMSJ OM Run",
 "description": "Registration for Training Only",
 "amount": "50",
 "quantity": "participants"
 }
]
 },
 "paymentMethods": {
 "paypal_classic": {
 "zip": "$address.zip",
 "business": "payments@cmsj.org",
 "address2": "$address.line2",
 "city": "$address.city",
 "address1": "$address.line1",
 "image_url": "http://omrun.cmsj.org/wp-content/uploads/2017/01/cropped-Om-run-512px.png",
 "item_number": "Registration for Training Only",
 "sandbox": false,
 "last_name": "$contact_name.last",
 "item_name": "2018 CMSJ OM Run",
 "cmd": "_cart",
 "state": "$address.state",
 "first_name": "$contact_name.first",
 "email": "$email"
 }
 }
}

Let us walk through the process of filling out the form now.

	The user fills out their information and adds a single participant.

	At the bottom of the form, the payment table is calculated live (from the information specified in paymentInfo) and displayed to the user.
![payment table](img/payment table.png)

	When the user clicks “Continue”, they are sent to the confirmation page. At the top, the user is asked to review a read-only copy of their form:
![confirmation page top](img/confirmation page top.png)

	At the bottom, the user is asked to continue payment with PayPal. The details of which payment methods show up here are controlled by the configuration set in formOptions.paymentMethods.
![confirmation page bottom](img/confirmation page bottom.png)

	Finally, the user is redirected to PayPal, where they can complete their payment.

	Note that the admin responses view of the user response, before the payment is complete, will show a “NOT PAID” for the response:
![not paid](img/not paid.png)

	But when the payment from PayPal goes in, a confirmation email will be sent to the user, and the user’s status will change to “PAID” (or “PARTLY PAID”, if the user has not paid the entire amount owed):
[image: ../_images/paid.png]paid

 When showing a payment table (such as in the confirmation email), you have the following object to work with:

{
 "currency": "USD",
 "total": 4,
 "items": [
 {
 "name": "Name",
 "description": "Name",
 "amount": 2,
 "quantity": 2,
 "total": 4
 }
]
}

Note that the total key in each element in items represents a single subtotal (amount * quantity), while paymentInfo.total represents the total amount owed, adding up all paymentInfo items.

Notes for installment items

Note that the totals for installment items (with installment: true) are not summed up when calculating paymentInfo.total.

When recurrenceTimes is specified for an item, then the total calculated for that item is equal to amount * quantity * recurrenceTimes. This applies only to installment items. However, it might make most sense not to show quantity or total for installment payments.

 To add attachments to an email, you can add an array to confirmationEmailInfo.attachments. Each item in the array defines a HTML template that is rendered and then converted to PDF.

{
 "confirmationEmailInfo": {
 "attachments": [
 {
 "fileName": "receipt.pdf",
 "template": {
 "html": "receipt template <h1>test</h1>"
 }
 }
]
 }
}

If you define multiple items to the attachments array, this will cause multiple attachments to be sent with each confirmation email, each attachment rendered by its own template.

!!! warning
CFF uses wkhtmltopdf [https://wkhtmltopdf.org/] to convert the given HTML template to a PDF file. This software might have some limitations for complex HTML files, so it is recommended to preview the PDF files once when using this feature.

 !!! warning
formOptions.confirmationEmailTemplates are not to be confused with confirmation email body Jinja2 templates. This topic is an advanced feature and relates to creating templates for the entire confirmationEmailInfo object itself, so that the admin can select from multiple variants of confirmation emails when they send custom emails.

You can define confirmation email templates in formOptions.confirmationEmailTemplates. These are currently accessible when an admin enters in a manual payment, during which they can select which template they would want to use when sending an email.

As an example use case, an admin may want to be able to either send 1) the entire email or 2) just a receipt with the payment table when entering in a manual payment. To do so, we should define two confirmation email templates:

{
 "confirmationEmailTemplates": [
 {
 "id": "receipt",
 "displayName": "Receipt",
 "confirmationEmailInfo": {
 "toField": "email",
 "subject": "Receipt",
 "template": {"html": "Here is your receipt. ... "}
 }
 },
 {
 "id": "fulltemplate",
 "displayName": "Full template",
 "confirmationEmailInfo": {
 "toField": "email",
 "subject": "Full template email",
 "template": {"html": "Here is your full tepmlate email. ... "}
 }
 }
]
}

Then a dropdown will come up during manual payment as follows:

[image: https://user-images.githubusercontent.com/1689183/64481611-56045400-d194-11e9-8e45-a3e250d1c78e.png]image

Template context

By default, all the variables for the given response are available through the value variable in the template context. For example, given a form response with the following value:

{
 "name": "Ashwin"
}

Using the template Hello, {{value.name}} will resolve to Hello, Ashwin.

View link

In the confirmation email template, you can use the view_link variable to get a response view link. This renders a form response which is disabled. Just do:

Modify your response here: {{view_link}}.

The resulting view link will be equal to {CFF_URL}/{formId}?responseId={responseId}&mode=view.

!!! note
The view link will only work if formOptions.responseCanViewByLink is set to true; this value is set to false by default for security reasons.

Edit link

In the confirmation email template, you can use the edit_link variable to get a response edit link. This renders the form, with the response data pre-filled in. Just do:

Modify your response here: {{edit_link}}.

The resulting view link will be equal to {CFF_URL}/{formId}?responseId={responseId}&mode=edit.

!!! note
The edit link will only work if both formOptions.responseCanViewByLink and formOptions.responseCanEditByLink are set to true; both are set to false by default for security reasons.

 Example - entire table

 Here are some sample templates for the confirmation email body.

Example - entire table

<div style='width: 100%;background-color: #eee; margin: 10px 0px;'>
 <div style='width: 80%;margin: auto; box-shadow: 1px 1px 4px grey;padding: 10px 30px;background: white;'>
 <h1>Monthly Activity information</h1>
Hari Om!

Thank you for Submitting Monthly Activity information{

Check that the details submitted (provided in this email for your convenience) are correct and notify us for any corrections required.

 <table>{% for key, val in response.items() %} <tr>
 <th>{{key}}</th>
 <td>{{val}}</td>
 </tr> {% endfor %} </table>

In His Service,
Webmaster
 </div>
</div>

Example - only a few things

<div style='width: 100%;background-color: #eee; margin: 10px 0px;'>
 <div style='width: 80%;margin: auto; box-shadow: 1px 1px 4px grey;padding: 10px 30px;background: white;'>
 <h1>Monthly Activity information form for {{value.month}}/{{value.year}}</h1>
Hari Om!

Thank you for Submitting Monthly Activity information

Centre Name: {{value.centre}}

{% if value.feedback %}Feedback: {{value.feedback}}{% else %}You will receive another email with feedback from Swamiji.{% endif %}

In His Service,
Webmaster
 </div>
</div>

Example - payment detail table

{% set payment_history_table %}{% block payment_history_table %}{% if payment_status_detail|length == 0 %}{% else %}<table> <h2> Payment History </h2> <tr> <th>Date</th> <th>Amount</th> </tr>{% for item in payment_status_detail %} <tr> <td>{% set dateparts = item.date['$date'].split('T') %}{{ dateparts[0] | format_date }}</td> <td>{{item.amount | format_payment(item.currency)}}</td> </tr>{% endfor %} </table>{% endif %}{% endblock %}{% endset %} <div style='width: 100%;background-color: #eee; margin: 10px 0px;'> <div style='width: 80%;margin: auto; box-shadow: 1px 1px 4px grey;padding: 10px 30px;background: white;'> <div style='text-align: center'> <div style='width: 100%; '> <h1 style='margin: auto;'>Chinmaya Mission Alpharetta</h1>
 </div> </div> <p>
 Thank you for your generous contribution to Chinmaya Mission Alpharetta, a 501(c)(3) not for profit corporation. We verify that Chinmaya Mission Alpharetta did not provide you with any goods or services in exchange for this contribution. Your donation will be used for the construction of Chinmaya Gurukul and for the educational and family enrichment activities.

 This email is your official receipt for your donation for tax purposes. Please print or save this message for your personal records. All donations are tax-deductible in the USA to the extent permissible by law.
 <h1> Donation Receipt </h1> </p> <table> <tr> <th>First Name</th> <td>{{ value.contact_name.first }}</td> </tr> <tr> <th>Last Name</th> <td>{{ value.contact_name.first }}</td> </tr> <tr> <th>Admin comments</th> <td>{{ value.adminComments }}</td> </tr> <tr> <th>Contact person</th> <td>{{ value.contactperson }}</td> </tr> <tr> <th>Email</th> <td>{{ value.email }}</td> </tr> <tr> <th>Installment text: Comments</th> <td>{{ value.installmentText.comments }}</td> </tr> <tr> <th>Name on Dharma Tree</th> <td>{{ value.nameOnDharmaTree }}</td> </tr> <tr> <th>Payment method</th> <td>{{ value.paymentMethod }}</td> </tr> <tr> <th>Phone</th> <td>{{ value.phone }}</td> </tr> <tr> <th>Pledge Amount</th> <td>{{paymentInfo.total | format_payment(paymentInfo.currency)}}</td> </tr> <tr> <th>Total Amount Paid</th> <td>{{ amount_paid | format_payment(paymentInfo.currency) }}</td> </tr> </table> <h2>Payment Info</h2> <table> <tr> <th>Item Name</th> <th>Description</th> <th>Amount</th> </tr>{% for item in paymentInfo['items'] %} <tr> <td>{{item.name}}</td> <td>{{item.description}}</td> <td>{{item.amount | format_payment(paymentInfo.currency)}}</td> </tr>{% endfor %} </table> {{ payment_history_table }}
 Sincerely,
 CMA Team </div> </div>

Example - multiple templates, for MSC

{% set payment_history_table %}{% block payment_history_table %}{% if payment_status_detail|length == 0 %}{% else %}<table> <tr> <th>Date</th> <th>Amount</th></tr>{% for item in payment_status_detail %} <tr><td>{% set dateparts = item.date['$date'].split('T') %}{{ dateparts[0] | format_date }}</td><td>{{item.amount | format_payment(item.currency)}}</td></tr>{% endfor %} </table>{% endif %}{% endblock %}{% endset %} {% set payment_table %}{% block payment_table %}<table> <tr> <th>Item</th> <th>Description</th> <th>Amount</th> <th>Quantity</th> <th>Totals</th> </tr> {% for item in paymentInfo['items'] %} <tr> <td>{{item.name}}</td> <td>{{item.description}}</td> <td>{{item.amount | format_payment(paymentInfo.currency)}}</td> <td>{{item.quantity}}</td> <td>{{item.total | format_payment(paymentInfo.currency)}}</td> </tr> {% endfor %} <tr> <td colspan='4'>Total</td> <td>{{paymentInfo.total | format_payment(paymentInfo.currency)}}</td> </tr> {% set amount_paid = amount_paid | float %} {% if amount_paid > 0 %} <tr> <td colspan='4'>Amount Paid</td> <td>{{amount_paid | format_payment(paymentInfo.currency)}}</td> </tr> {% if paymentInfo.total - amount_paid > 0 %} <tr> <td colspan='4'>Remaining Amount Due</td> <td>{{(paymentInfo.total - amount_paid) | format_payment(paymentInfo.currency)}}</td> </tr> {% endif %} {% endif %} </table>{% endblock %}{% endset %}{% set info_table %}{% block info_table %}<table align: center> <tr> <th> Primary Contact: </th> <td> {{value.contactName.first}} {{value.contactName.last}} </td> </tr> <tr> <th> Family ID: </th> <td> {{counter}} </td> </tr> <tr> <th> Number of Attendees: </th> <td> {{value.participants | length }} </td> </tr> <tr> <th> Payment Method: </th> <td> {% if value.paymentMethod == 'paypal' %} PayPal {% elif value.paymentMethod == 'check' %} Check {% endif %} {% if value.installments == 'installments' %} , with installments {% endif %} </td> </tr> </table>{% endblock %}{% endset %}{% set amount_paid = amount_paid | float %} {% set full_refund = namespace(status=False) %} {% for item in payment_status_detail %} {% set item_amount = item.amount | float %}{% if item_amount < 0 and amount_paid == 0 %} {% set full_refund.status = True %} {% endif %} {% endfor %}<style> .cff-msc-header-container { font-family: 'Open Sans'; font-size: 16px; text-transform: none; line-height: normal; } .cff-msc-header { color: #ec6b33; font-weight: bold; text-transform: capitalize; font-size: 24px; font-family: Verdana; text-align: center; } </style> <div class='cff-msc-header-container'> <div class='cff-msc-header'>28th Chinmaya Mahasamadhi Aradhana Camp
 “THE PERFECT VISION” </div> <div style='float: center; text-align: center'> Thursday July 29th – Monday Aug 3rd, 2021
 Hyatt Regency, 1333 Bayshore Highway, Burlingame, California, United States, 94010 </div> <br style='clear: both' /> </div>

 <style> table { font-family: arial, sans-serif; border-collapse: collapse; width: 70%; } td, th { border: 1px solid #0d0d0d; text-align: left; padding: 8px; } th { background-color: beige; } </style> {% if full_refund.status %} We have received and processed your refund.

 {{ info_table }}

 {{ payment_table }}

 {{payment_history_table }}

 Thanks,
MSC 2021 Team {% else %} {{ info_table }}

 <table> <tr> <th> Attendees </th> <th> Gender </th> </tr> {% for participant in value.participants %} <tr> <td> {{participant.name.first}} {{participant.name.last}} </td> <td> {{participant.gender}} </td> </tr> {% endfor %} </table>

 {{ payment_table }}
 {% if value.installments == 'installments' %} <table> <tr> <th colspan='2'> <center>Installment Payments</center> </th> </tr> <tr> <th> Date Due </th> <th> Amount Due</th> </tr> <tr> <td>{{value.installment1 | format_date}}</td> <td>{{(paymentInfo.total / 3) | format_payment(paymentInfo.currency)}}</td> </tr> <tr> <td>{{value.installment2 | format_date}}</td> <td>{{(paymentInfo.total / 3) | format_payment(paymentInfo.currency)}}</td> </tr> <tr> <td>{{value.installment3 | format_date}}</td> <td>{{(paymentInfo.total / 3) | format_payment(paymentInfo.currency)}}</td> </tr> </table> {% endif %} {% if value.paymentMethod == 'check' %}

 {{ payment_history_table }}

 <center>Make checks payable to:</center> <h2> <center>Chinmaya Mission San Jose</center> </h2> <center>Please write the Family ID on the checks.</center> <center>Mail checks to:</center> <center>ATTENTION: MSC-2021</center> <center>Chinmaya Mission San Jose</center> <center>10160 Clayton Road </center> <center>San Jose, CA 95127</center> <center>USA</center>
Registration may be cancelled if payment is not received in 15 days.

{% endif %} Thank you for Registering for the 2021 Chinmaya Mahasamadhi Aradhana Camp. {% endif %}

 Confirmation emails

Confirmation emails

Confirmation emails can be sent for each form response. They can be enabled and configured with the formOptions.confirmationEmailInfo property.

!!! note
By default, confirmation emails are not sent unless the user has paid. This means that, by default, if
a form has no payment options set up, a confirmation email will be sent on submit.

However, if you have configured a payment method and the user selects some items to buy, then they will only receive a confirmation email once they click through the confirmation page. In the case of PayPal, they will only receive the email when they have paid in full. If they select a `manual_approval` payment option, the email will be sent right after they click the button that triggers the `manual_approval` payment option.

Configurable fields

The following fields can be configured:

{
 "cc": "a@b.com",
 "bcc": "c@b.com",
 "replyTo": "b@b.com",
 "subject": "CFF Unit Testing Form\n Confirmation",
 "toField": "email",
 "fromName": "Test",
 "from": "a@b.com",
 "template": {
 "html": "[html template]"
 }
}

Only subject, template, toField / to, and from are required fields.

About toField

toField specifies a path from which the “to” field of the email is retrieved from. For example, if it is set to email, then the confirmation email will be sent to the value of the email field in the form (so the form data must look something like this:)

{
 "email": "abc@gmail.com",
 ...
}

You can also use the to property to send email to a hardcoded email (such as email1@chinmayamission.com) instead of a specified field.

{
 "to": "a@b.com"
}

Configuring a “from” field

The from field specifies which email address sends the email. All emails are sent through Amazon’s Simple Email Service (SES). This means that all additional from identities must be confirmed by an admin through the AWS console.

If you want to send emails from a custom email address, the easiest way to do so (without needing to go through confirmation) is to set the from field to equal itsupport.ccmt@chinmayamission.com and then change the replyTo field to be equal to the address of the custom sender. For example:

{
 "from": "itsupport.ccmt@chinmayamission.com",
 "replyTo": "custom.email@chinmayacenter.com"
}

Multiple email addresses

You can specify multiple emails by giving an array value for cc, bcc, toField, or to. For example, you can specify {"cc": ["a@b.com", "a2@b.com"]}.

Templates

Confirmation email body text is set through confirmationEmailInfo.template.html field. This text can be specified as a Jinja [http://jinja.pocoo.org/] template, so that the email dynamically changes based on what the individual form response contains.

See Sample templates for some sample templates that may fit your needs with a little tweaking.

See Making your own templates for a more complete list of features offered by CFF for creating your own template.

Disabling email sending with defaultSubmitOptions

If you want to disable sending emails, you should set formOptions.defaultSubmitOptions.sendEmail to false.

{
 "defaultSubmitOptions": {
 "sendEmail": false
 }
}

You can also conditionally sending emails by including a string with a payment expression in sendEmail. For example, to only send emails if age > 10, you can do the following:

{
 "defaultSubmitOptions": {
 "sendEmail": "age > 10"
 }
}

 <no title>

 Coupon codes need to be specified both in the field (a string field that inputs a coupon code) and also a specification in paymentInfo.items. Note that these codes are not secure, as anyone could figure out the code by looking at the schema.

Regular coupon code called CODE for 80% off the total price:

 {
 "name": "Coupon Code 80% off",
 "description": "Coupon Code 80% off",
 "amount": "-0.8 * $total",
 "quantity": "$couponCode:CODE"
 }

Regular coupon code called CODE that can only be used once:

 {
 "name": "Coupon Code 80% off",
 "description": "Coupon Code 80% off",
 "amount": "-0.8 * $total",
 "quantity": "$couponCode:CODE",
 "couponCode": "CODE",
 "couponCodeMaximum": "1"
 }

Coupon code with three maximum 5K’s:

 {
 "name": "Coupon Code 100% off for 5K",
 "description": "Coupon Code 100% off for 5K",
 "amount": "-35 * $participants.race:5K",
 "quantity": "$couponCode:CODE",
 "couponCode": "CODE",
 "couponCodeMaximum": "3",
 "couponCodeCount": "$participants.race:5K"
 }

 Examples

 CFF uses its own custom expression language to create payment expressions based on the value of a form’s response. Payment expressions should be specified in both the amount and quantity values of elements of the paymentInfo.items array. For example:

{
 "amount": "participants * 10",
 "quantity": 1
}

!!! warning

 Payment expressions are evaluated by [expr-eval](https://github.com/silentmatt/expr-eval) on the frontend and [py-expression-eval](https://github.com/Axiacore/py-expression-eval) on the backend, so any value within them must be parseable by both libraries.

Examples

Constant value

The simplest example of a payment expression is a string that evaluates to a constant value.

500

You can also use expressions, as the following:

4 * 100 + 100

evaluates to 500 .

Dynamic value

To use a dynamic value from the form data, simply add the name of the key in the expression and it will be substituted with the value.

For example, having an expression:

4 * age

with form data equal to

{
 "age": 10
}

evaluates to 40 .

!!! note

Note that all variables in payment expressions can be prepended by a dollar sign (`$`) -- so the previous example could be written as `4 * $age` -- these are both equivalent.

Array lengths

If a variable in the expression corresponds to an array variable in the form data, it will be substituted by the length of the array. For example:

40 * participants

with form data equal to

{
 "participants": [
 {
 "name": "Test1"
 },
 {
 "name": "Test2"
 }
]
}

evaluates to 80 .

Note that this expression is essentially equal to the idea of charging “$40 per participant”.

Counting array items based on a condition

It is possible to count array items based on a condition by the expression [path]:[value] . For example, the following expression:

40 * amounts:1

with form data equal to

{
 "amounts": [1, 2, 3]
}

will evaluate to 40 .

You can also do this with objects. For example:

40 * (participants.age:1 + participants.age:2)

with form data equal to

{
 "participants": [
 {
 "age": 1
 },
 {
 "age": 2
 },
 {
 "age": 40
 }
]
}

will evaluate to 80 . Note that this is essentially equivalent to charging “$40 for 1- or 2- year olds”.

!!! note

This feature is limited because there is a limit to what characters can be entered in an expression, and ranges or more complex values cannot be easily specified in this format. A more generalized and powerful version of this construct is found in the `cff_countArray` function, mentioned below.

Conditionally including items

It is possible to conditionally include values either by utilizing a boolean value in the form data or by adding a conditional operator (< , > , <= , >= , != , ==). Each conditional expression (a <= b) evaluates to either 0 or 1, which can then be added together to create an “or” operation or multiplied together to create an “and” operation.

For example:

100 * (participants > 2) + 50 * (participants < 1)

This expression will evaluate to 100 if the length of participants is greater than 2, but will be equal to 50 if the length of participants is less than 1.

Another example:

{
 "paymentInfo": {
 "items": [
 {
 "name": "Registration India",
 "description": "Registration India",
 "amount": "100",
 "quantity": "nationality:Indian"
 },
 {
 "name": "Registration Outside India",
 "description": "Registration Outside India",
 "amount": "1000",
 "quantity": "1 - nationality:Indian"
 }
]
 }
}

Note that in this case, we are able to use the [key]:[value] syntax to see if a particular form data value is equal to a given string. Here, we are charging 100 if the participant is from India, but 1000 if the participant is not from India.

Custom functions

CFF has defined some custom functions, all of which start with cff_ , that can also be used in payment expressions:

cff_createdBetween

cff_createdBetween checks if a form response was created between two specified dates, and returns 1 if true and 0 if false. Note that both dates must be in ISO 8601 [https://en.wikipedia.org/wiki/ISO_8601] format and in UTC.

cff_createdBetween("2019-09-18T16:53:26.238Z", "2019-09-18T18:53:26.238Z")

!!! warning

Make sure you perform the appropriate timezone adjustment. Daylight savings time may require you to change the hour offset of the beginning and end dates differently, depending on how far apart they are.

This is useful for creating an “Early Bird” discount that may only apply for responses that were only created during a certain date:

{
 "paymentInfo": {
 "currency": "USD",
 "redirectUrl": "http://cmsj.org/",
 "items": [
 {
 "name": "2020 Bay Area CHYK Presidents' Day Weekend Retreat Early Bird Registration",
 "description": "Early Bird Registration",
 "amount": "191",
 "quantity": "cff_createdBetween('2019-11-26T08:00:00.000Z', '2020-01-01T08:00:00.000Z')"
 },
 {
 "name": "2020 Bay Area CHYK Presidents' Day Weekend Retreat Regular Registration",
 "description": "Regular Registration",
 "amount": "241",
 "quantity": "cff_createdBetween('2020-01-01T08:00:00.000Z', '2020-02-05T08:00:00.000Z')"
 }
]
 }
}

cff_yeardiff

cff_yeardiff calculates the difference, in years, between the two dates are passed to it. Both dates have to be in YYYY-MM-DD format. A sample use case for this is calculating someone’s age based on their date of birth.

For example:

cff_yeardiff('2019-09-01', dob)

with form data equal to

{
 "dob": "1999-01-12"
}

evaluates to 20.

cff_countArray

cff_countArray counts the number of times the given expression is true within an array. For example:

cff_countArray(CFF_FULL_participants, "age > 2")

with form data equal to

[
 { "age": 3 },
 { "age" : 1 }
]

Will return a value of 1 .

Note that the expression in the second argument to cff_countArray must be surrounded in double quotes (so should be escaped in JSON by using \").

Note that “CFF_FULL_” must be added as a prefix to any variable that should return a non-numeric value (such as an array). For example, CFF_FULL_participants returns the actual value of participants so it can be used in the function; just putting in participants will return the length of the array, 3.

cff_today (backend only)

cff_today() returns today’s date as a string in YYYY-MM-DD format – for example, 2019-07-18.

cff_addDuration (backend only)

cff_addDuration(date, duration) adds duration to date , returning a date string in YYYY-MM-DD format. date must be specified in YYYY-MM-DD format and duration must be specified in the ISO Duration [https://en.wikipedia.org/wiki/ISO_8601#Durations] format.

For example, cff_addDuration(cff_today(), "P1M") adds one month to the current year.

cff_addDuration("2000-01-01", "P2M") should return "2000-03-01" .

cff_nthOfNextMonth (backend only)

cff_nthOfNextMonth(date, n, maxDayDiff) gives the next n th day of the month following date . If maxDayDiff is specified and this day is less than maxDayDiff away from date , then the month is increased by 1.

 Payment Info

Payment Info

The following is a typical example of the formOptions.paymentInfo object:

{
 "paymentInfo": {
 "currency": "USD",
 "redirectUrl": "http://omrun.cmsj.org/training-thankyou/",
 "items": [
 {
 "name": "2019 CMSJ OM Run",
 "description": "Registration for Training Only",
 "amount": "50",
 "quantity": "participants"
 }
]
 }
}

Note that the only required field here is items. Within each element of items, all four fields – name, description, amount, and quantity – are required.

Payment Items

Payment items, specified in the items array, define the actual payment calculation for a specific response in the form.

name: Name of the item.

description: Description of the item.

amount: A CFF payment expression that evaluates to the item amount.

quantity: A CFF payment expression that evaluates to the item quantity.

The payment info for a response is calculated live when a user modifies the response value, and also calculated once the user submits a form. For each item, amount and quantity are evaluated to get numbers and are then multiplied together to get the subtotal for that particular payment item – this subtotal will be set in the response as the total property of the payment item. Finally, only payment items that have a total that is not equal to zero will be saved in the response.

!!! note
You can also have payment items with negative values for amount and/or quantity. This allows you to create payment items that can act as specific discounts.

Note that amount and quantity are strings, not numbers, as they are payment expressions that are dynamically evaluated based on the response value. For more information on how amount and quantity should be structured, see Payment Expressions.

Currency

The paymentInfo.currency field can be set – if this field is not set, the default currency is USD. Currently, we only support “USD” and “INR” for this value.

{
 "currency": "INR"
}

Multiple currencies

CFF has limited support for multiple currencies. A single response can only be tied to a single currency, but CFF does support allowing responses from the same form to each be associated with a different currency.

You can also set the paymentInfo.currencyTemplate variable in order to do this. This field must be set to a Jinja2 template – similar to a confirmation email template – that evaluates to a valid currency based on the response value. For example, to make a form conditionally a different currency based on the user-entered nationality:

{
 "currencyTemplate": "{% if value.nationality == 'India' %}INR{% else %}USD{% endif %}"
}

!!! note
If you take advantage of the multiple currencies feature, you will also need to adjust the payment expressions in paymentInfo.items accordingly so that they also change their values based on the currency (because you may very likely not want to charge both 100 USD and 100 INR for the same item!)

!!! warning
Because payment information must be calculated on the frontend, we actually use nunjucks [https://github.com/mozilla/nunjucks], not Jinja2, to parse the template on the frontend, so there’s a possibility of slight compatibility differences between nunjucks and Jinja2.

Redirect URL

By default, the user will be redirected to http://www.chinmayamission.com/ after completing a payment with an external provider, such as PayPal or CCAvenue. The paymentInfo.redirectUrl property can override this value. For example, to redirect users to a custom thank-you page:

{
 "redirectUrl": "http://omrun.cmsj.org/training-thankyou/"
}

 Payment installments pattern

 To do recurring payments, include an item with recurrenceDuration in paymentInfo.items. This is currently implemented using PayPal’s Recurring Payments API [https://developer.paypal.com/docs/classic/paypal-payments-standard/integration-guide/Appx_websitestandard_htmlvariables/#recurring-payment-variables].

{
 "paymentInfo": {
 "currency": "USD",
 "items": [
 {
 "name": "Name",
 "description": "Description",
 "amount": 40,
 "quantity": 1,
 "recurrenceDuration": "1M",
 "recurrenceTimes": "12"
 }
]
 }
}

recurrenceDuration (required) describes how often the recurring payment happens. It is in the format [#][D|W|M|Y]. For example, 1M means “every month.”

recurrenceTimes describes how many times the payment recurs. For example, setting it equal to "12" means that the payment will recur 12 times. If this is not specified, then the payment recurs indefinitely.

Note that if a recurring payment item is included in paymentInfo.items (defined as an item with a recurrenceDuration) and has an amount * quantity greater than zero, then when the user goes to PayPal checkout, they will only see the option to pay their recurring payment (not any other options in the cart).

Payment installments pattern

Here is a sample configuration that describes how to allow a user to make payment installments:

[
 {
 "name": "Regular registration",
 "description": "Regular registration",
 "amount": "100",
 "quantity": "100"
 },
 {
 "name": "Monthly installment",
 "description": "Monthly installment",
 "amount": "$total / 3",
 "quantity": "$installment",
 "recurrenceDuration": "1M",
 "recurrenceTimes": "3",
 "installment": true
 }
]

When setting installment to true, this will make sure that this particular payment item will not be counted in paymentInfo.total. That way, it just represents an “installment” payment that pays for the rest of the fee. It will only be calculated on the client side, and its value will be calculated last.

Tracking recurring payment status

We currently do not have a way to track whether a user has cancelled their subscription. This is a todo. Each time the payment comes in, the AMOUNT_PAID increases.

Confirmation emails are sent when recurring payments are received, even if PAID is not true (if the user is still PARTLY PAID).

 Account setup

 CCAvenue integration is the best supported way by CFF to accept web payments in India. When a user checks out using CCAvenue, they will be redirected to the CCAvenue checkout page to complete their transaction.

Account setup

Before a CCAvenue account can be used with CFF, an admin will need to add a manual entry directly in the database with the required fields. Please contact webmaster@chinmayamission.com if you would like to get this set up.

{
 "merchant_id":"...",
 "SECRET_working_key":"...",
 "access_code":"...",
 "_cls":"chalicelib.models.CCAvenueConfig"
}

Configuration for a single form

Add the following key in paymentMethods:

{
 "ccavenue": {
 "merchant_id": "...",
 }
}

The only required key is merchant_id, which is your CCAvenue merchant id.

Using a sub account

To use a CCAvenue sub account, add the sub_account_id parameter as follows:

"paymentMethods": {
 "ccavenue": {
 "merchant_id": "...",
 "sub_account_id": "..."
 }
}

Prefill checkout fields

To prefill checkout fields on the CCAvenue page, you can use the following fields:

{
 "ccavenue": {
 "billing_name": "{{ value.name }}",
 "billing_address": "{{ value.address.line1 }}",
 "billing_city": "{{ value.address.city }}",
 "billing_state": "{{ value.address.state }}",
 "billing_zip": "{{ value.address.zip }}",
 "billing_country": "{{ value.address.country }}",
 "billing_tel": "{{ value.phone }}",
 "billing_email": "{{ value.email }}"
 }
}

These fields can contain either constant strings or jinja2 templates. If they contain templates (as in the above example), they should be structured the same way as confirmation email templates are structured.

Redirect URL

To set the URL that the user is redirected to after the payment is complete, set the redirectUrl parameter on the CCAvenue payment options dict. By default, this is set to http://chinmayamission.com.

{
 "ccavenue": {
 "redirectUrl": "https://my-custom-site.com"
 }
}

Cancel URL

When a user cancels their CCAvenue transaction, they are redirected to http://chinmayamission.com. Configuration of the Cancel URL is not yet supported yet.

 Sample configuration

 The Manual Approval payment method covers all payment methods that do not involve online payment through a payment method gateway connected to CFF. A record of each payment must be manually entered in by an admin. Examples of use cases for Manual Approval payments include:

	Cash payments

	Check payments

	Online payments that are not connected to CFF directly, such as Zelle [https://www.zellepay.com/]

Sample configuration

Here is a sample configuration:

{
 "manual_approval": {
 "payButtonText": "Pay by Check",
 "successMessage": "Hari Om,

Thank you for your registration. Make check payable to \"Chinmaya Mission San Jose\"
Please add Note: MSC 2020
10160 Clayton Rd, San Jose, CA 95127",
 "confirmationEmailInfo": {
 "template": {
 "html": "<div style='width: 100%;background-color: #eee; margin: 10px 0px;'> <div style='width: 80%;margin: auto; box-shadow: 1px 1px 4px grey;padding: 10px 30px;background: white;'> <div style='width: 100%; max-width: 500px; text-align: center;'> <h1 style='margin: auto;'>Chinmaya Aradhana Camp 2020 Registration Confirmation</h1></div>
 Hari OM,

 Thank you for signing up for the 2020 MSC.
 <table> <tr> <th>First Name</th> <td>{{value.contactName.first}}</td> </tr> <tr> <th>Last Name</th> <td>{{value.contactName.last}}</td> </tr> </table>
 <h2>Payment Info</h2> <table> <tr> <th>Item Name</th> <th>Description</th> <th>Amount</th> </tr>{% for item in paymentInfo['items'] %} <tr> <td>{{item.name}}</td> <td>{{item.description}}</td> <td>{{item.amount | format_payment(paymentInfo.currency)}}</td> </tr>{% endfor %} </table>
Amount paid: {{amount_paid | format_payment(paymentInfo.currency)}}

 You can view your response at this link. Make check payable to \"Chinmaya Mission San Jose\"
Please add Note: MSC 2020
10160 Clayton Rd, San Jose, CA 95127

 You can view your response at this link.

 Thanks,
 CMSJ Team

 - </div> </div>"
 },
 "cc": [],
 "subject": "MSC payment pending - please mail your check",
 "toField": "email",
 "fromName": "MSC 2020 - Chinmaya Aradhana Camp 2020",
 "bcc": "parag@cmsj.org",
 "from": "MSC2020@cmsj.org"
 }
 }
}

Note that the payment method is still called “manual_approval” by the system. The user, however, sees that it is a check payment because of the way payButtonText has been configured. At the bottom of the form, the user will see a button with this very text on it:

![pay by check](img/pay by check.png)

Finally, when the user clicks the button, a confirmation email is sent to the user using the information provided in manual_approval.confirmationEmailInfo. Note that this is really more of a “reminder email” or a “payment pending email” notifying the user that they need to complete payment at a later time.

The user is then shown a final screen, with the payment table at top and then a message at the bottom. This message can be customized by the manual_approval.successMessage attribute:

![pay by check success screen](img/pay by check success screen.png)

!!! note
Typically, both the confirmation email and successMessage should provide the user with instructions on how to complete the payment later.

Finally, once the admin receives the payment, they should log on to the form responses admin page and enter in the payment. See Managing Responses for more information.

Typically, an email will then be sent letting the user know that their payment has been received (this email template will come from formOptions.confirmationEmailInfo, not manual_approval.confirmationEmailInfo).

Multiple Manual Approval methods

If you need to show the user multiple Manual Approval methods, you can add a manual_approval_2 key. The value for this key supports everything that could be done in the manual_approval key.

Your configuration may then look like this:

{
 "manual_approval": {
 "payButtonText": "Pay by Cash",
 "successMessage": ...,
 "confirmationEmailInfo": ...,
 },
 "manual_approval_2": {
 "payButtonText": "Pay by Cash",
 "successMessage": ...,
 "confirmationEmailInfo": ...,
 }
}

See the Overview for more information about strategies for handling multiple payment methods.

!!! note
CFF currently only supports up to two different Manual Approval payment methods.

 Payment Methods

Payment Methods

The following is a typical example of the formOptions.paymentMethods object:

"paymentMethods": {
 "paypal_classic": {
 "zip": "$address.zip",
 "business": "payments@cmsj.org",
 "address2": "$address.line2",
 "city": "$address.city",
 "address1": "$address.line1",
 "image_url": "http://omrun.cmsj.org/wp-content/uploads/2017/01/cropped-Om-run-512px.png",
 "item_number": "Registration for Training Only",
 "sandbox": false,
 "last_name": "$contact_name.last",
 "item_name": "2018 CMSJ OM Run",
 "cmd": "_cart",
 "state": "$address.state",
 "first_name": "$contact_name.first",
 "email": "$email"
 },
 "ccavenue": {
 ...
 }
}

Note that the paymentMethods object is a dictionary, and it can have keys equal to any of the payment methods supported by CFF.

Supported payment methods

The subpages within this section explain more about how to use and configure each payment method.

Key name	Description
———–	———–
paypal_classic	PayPal classic integration
ccavenue	CCAvenue integration
manual_approval	Manual approval payment integration
manual_approval_2	A secondary manual approval payment integration
redirect	Redirects to a new page
text	Shows text

Conditionally handling multiple payment methods

You can conditionally show or hide possible payment methods based on the form data by using the cff_show_when attribute on the config dictionary of a particular payment method. The value of cff_show_when should be a payment expression – if this value evaluates to 0, the payment method is hidden on the confirmation page. Otherwise, the payment method is shown.

You can also use the payButtonText property to customize the text of the pay button for a particular payment method.

 Sample configuration

 The PayPal classic integration integrates using the PayPal Web API. Once the user clicks on the pay button, they are redirected to PayPal, from where they can complete the rest of the payment process.

Sample configuration

{
 "paypal_classic": {
 "zip": "$address.zip",
 "business": "payments@cmsj.org",
 "address2": "$address.line2",
 "city": "$address.city",
 "address1": "$address.line1",
 "image_url": "http://omrun.cmsj.org/wp-content/uploads/2017/01/cropped-Om-run-512px.png",
 "item_number": "Registration for Training Only",
 "sandbox": false,
 "last_name": "$contact_name.last",
 "item_name": "2018 CMSJ OM Run",
 "cmd": "_cart",
 "state": "$address.state",
 "first_name": "$contact_name.first",
 "email": "$email"
 }
}

The only field that is required is business – this is the email of the PayPal account that will receive the money from the form payments.

!!! note
Make sure IPNs are not turned off [https://www.paypal.com/us/smarthelp/article/how-do-i-stop-receiving-instant-payment-notifications-(ipns)-faq426] on your PayPal account. The integration should work by default, but if it doesn’t work, that might be a reason things are not working properly.

!!! warning
By default, PayPal accounts are configured such that they do not allow guest payments – meaning that users will need to sign up for an account in order to check out. If you would like to enable guest payments, you must turn this setting on in your account: see Enable guest payments [https://developer.paypal.com/docs/integration/direct/payments/guest-payments/].

The other fields are all optional. Note that some of the fields (such as first_name and last_name), if set, need to be set to payment expressions. This way, they will be dynamically set based on form data. This is used to prefill the guest checkout information fields for users who do use guest checkout to pay with PayPal.

Troubleshooting

If IPNs are not working on PayPal, try going to:

	https://www.paypal.com/merchantnotification/ipn/history to check IPN history

	https://www.paypal.com/merchantnotification/ipn/preference to enable IPNs

 Sample configuration

 The redirect payment method redirects to a new form.

Sample configuration

Here is a sample configuration:

{
 "redirect": {
 "payButtonText": "Continue",
 "skipConfirmationPage": true,
 "formId": "644aedc97bff0cc53b9212ae",
 "initialFormDataKeys": "[\"address\"]",
 "specifiedShowFields": "{\"CFF_uiSchema.address['ui:readonly']\": true}"
 }
}

payButtonText: Text that shows up on the button

skipConfirmationPage: If set to true, the confirmation page isn’t shown, and the page immediately redirects to the given form (if the payment method is enabled / shown). Default is false.

formId: Form ID to redirect to

initialFormDataKeys: If set, the form will be populated with an object that consists of the specified form data keys from the current form data. Specify a JSON-stringified list of paths (which will be passed to lodash get) – so each path should be in dot notation (e.g., address or address.line1). Note that this form data will show up in the next form URL though, through the initialFormData query string. See section below for more details.

specifiedShowFields: If set, the form’s schema will be augmented with the given JSON-stringified representation of an object. The keys should be a list of paths to set (lodash paths) and the values should be the values to set. The schema to be augmented also shows up in the next form URL. See section below for more details.

Conditionally redirect

You can conditionally redirect by combining skipConfirmationPage with cff_show_when. For example, to automatically redirect to a new form on submit when age > 10, do the following:

{
 "redirect": {
 "skipConfirmationPage": true,
 "cff_show_when": "age > 10"
 }
}

initialFormData

Forms can have an initialFormData query string, which populates a form with the given initial form data. The value should be a JSON-stringified version of an object that should be used to populate the initial form data of the form. For example, to set initial form data to {"returning": true}, use:

https://forms.chinmayamission.com/v2/forms/6431d67b8d817d41006d17c2/?initialFormData=%7B%22returning%22%3Atrue%7D

You can generate the value for the query string by running encodeURIComponent(JSON.stringify({"returning": true}))

specifiedShowFields

Forms can have a specifiedShowFields query string, which augments the form’s schema with the paths specified in the given form data. The keys should be lodash paths to set, and the values should be the values to set.

For example, you can augment the schema’s required and properties.customSponsorshipAmount.$ref fields by running the following: encodeURIComponent(JSON.stringify({"required": ["company_name", "contact_name", "email", "email_secondary", "address", "customSponsorshipAmount"], "properties.customSponsorshipAmount.$ref": "#/definitions/customSponsorshipAmount" }))

And then go to the URL:

https://forms.chinmayamission.com/v2/forms/6431d67b8d817d41006d17c2/?specifiedShowFields=%7B%22required%22%3A%5B%22company_name%22%2C%22contact_name%22%2C%22email%22%2C%22email_secondary%22%2C%22address%22%2C%22customSponsorshipAmount%22%5D%2C%22properties.customSponsorshipAmount.%24ref%22%3A%22%23%2Fdefinitions%2FcustomSponsorshipAmount%22%7D

You can also change the uiSchema by prepending the path with CFF_uiSchema. For example, you can do as follows:

encodeURIComponent(JSON.stringify({"CFF_uiSchema.couponCode['ui:widget']": "text"}))

 Sample configuration

 The text payment method simply shows text (instead of a button).

Sample configuration

Here is a sample configuration:

{
 "text": {
 "text": "Contact XXX to make a payment."
 }
}

text: Text that shows up on the payment screen. Can also be HTML.

 Header

 !!! warning
This feature is still under active development and not complete.

Dashboard options are accessible through the user dashboard view. This is accessible through the /v2/dashboard/formId link – for example, https://forms.beta.chinmayamission.com/v2/dashboard/5c99508834513d000161a237/

Header

To add a dashboard header, you can insert custom HTML in dashboardOptions.views.header. The header will be shown above the tabs.

 "dashboardOptions": {
 "header": "<h1>Welcome to the MSC dashboard!</h1>
"
 }

Adding tabs to the dashboard

You can add a tab to the dashboard by editing the views array. Note that each item in views must have a unique id and a displayName.

 "dashboardOptions": {
 "views": [
 {
 "id": "basic",
 "displayName": "Edit Basic Info",
 "type": "form",
 "pickFields": [
 "contactName"
]
 }
]
 }

Template views

The simplest type of view is a template – this is a HTML template
that displays the response info in the specified template.

For example:

{
 "id": "profile",
 "displayName": "View profile",
 "type": "template",
 "template": {
 "html": {
 "Hello, {{value.name.first}} {{value.name.last}}. Here is your info:
"
 }
 }
}

Form views

The form view shows a subset of a form. You can choose which properties to show using the pickFields attribute. Optionally, you can override the uiSchema for those particular fields with the uiSchema attribute (the uiSchema will merge with the existing uiSchema, but replace the values of overlapping keys).

{
 "id": "subset",
 "displayName": "Edit Basic Info",
 "type": "template",
 "pickFields": [
 "contactName"
],
 "uiSchema": {
 "contactName": {
 "classNames": "col-12"
 }
 }
}

Right now, we only support top-level fields with pickFields.

Disallow modification of existing items in arrays

You can disallow modification of existing items in an array (but still allow adding additional items) by adding the following uiSchema attribute to modify the uiSchema:

{
 "id": "subset",
 "displayName": "Edit Basic Info",
 "type": "template",
 "pickFields": [
 "participants"
],
 "uiSchema": {
 "participants": {
 "ui:cff:disableModifExistingItems": true
 }
 }
}

 <no title>

 An editSchema is used to make it easier to edit things in bulk in the admin. It will end up rendering a dropdown in the actual admin view, so that admins can quickly edit data.

It goes in the .columns attribute of an element in dataOptions.views:

{
 "label": "On hold",
 "value": "on_hold",
 "editSchema": {
 "type": "string",
 "enum": ["Yes", "No"],
 "enumNames": ["Yes", "No"]
 }
}

It must include both enum and enumNames.

Here is how such a column would look like:

![edit schema](img/edit schema.png)

 Response Reporting

Response Reporting

Response reporting, display options, and admin aggregation options can all be controlled by the formOptions.dataOptions object.

dataOptions structure

Here is the structure of the dataOptions object (all root fields are optional):

{
 "dataOptions": {
 "views": { ... },
 "groups": { ... },
 "export": { ... },
 "search": { ... }
 }
}

The views field is used to control which tabs show up in the admin responses view.

The groups field is used to define groups (such as classes) that individual responses can be assigned to.

The export field is used to configure export options to Google Sheets.

The search field is used to configure options regarding search endpoint capabilities for responses.

 Response permissions

Response permissions

By default, people cannot anonymously view or edit responses by link. If you want to allow people to anonymously view / edit responses with only the link, set the following in formOptions:

 "responseCanViewByLink": true,
 "responseCanEditByLink": true

Permissions for login required forms

Note that the above two permissions do not have any effect for forms that require login (forms that have loginRequired set to true).
By default, a login required form always prompts users to log in when they go to the form, and it allows users to modify
their existing response by default.

If you want to disable modification of users’ existing responses for a login required form, set the following in formOptions:

{
 "responseModificationEnabled": false
}

If you want to disable submission of users’ existing responses altogether for a login required form, set the following in formOptions:

{
 "responseSubmissionEnabled": false
}

 Default view

 The dataOptions.views attribute helps control which tabs show up on the response table.

Default view

By default, only a single tab is shown, and it contains the following fields:

	The following fields: "ID", "PAID", "AMOUNT_PAID", "DATE_CREATED"

	All object fields, recursively traversed, of the actual response value

![default view](img/default view.png)

Changing the columns

If you want to override the default view, add an entry to formOptions.dataOptions.views .

{
 "dataOptions": {
 "views": [
 {
 "id": "all",
 "displayName": "All",
 "columns": [
 "ID",
 "DATE_LAST_MODIFIED",
 "DATE_CREATED",
 "COUNTER",
 "email"
]
 }
]
 }
}

Note that each item in views must have a unique id and (optionally) a displayName . The columns value describes which columns will show up in this view’s table view in the “Responses” tab.

If the views array has multiple items in it, this will cause multiple tabs to show up in the Responses view. This is useful so that an admin can see different views of data based on what they are interested in; and this feature is needed in order to properly show nested JSON data in two-dimensional table views.

Here is an example of how the tabs rendered by multiple views look like:

![multiple views](img/multiple views.png)

Possible columns

The possible columns include:

	Any valid accessor of the form data. This accessor is passed to lodash’s get function, so it can be equal to a nested value such as name.first or parent.age .

	ID - a string value of the response id

	PAID - a string value describing the response’s paid status. Equal to “PAID”, “NOT PAID”, or “PARTLY PAID”.

	DATE_CREATED - a formatted string of the date the response was created.

	DATE_LAST_MODIFIED - a formatted string of the date the response was last modified.

	AMOUNT_OWED - a formatted string of how much money is owed. Technically, this is equal to paymentInfo.total formatted with paymentInfo.currency .

	AMOUNT_OWED - a formatted string of how much money has been paid. Technically, this is equal to amount_paid formatted with paymentInfo.currency .

	admin_info - the admin_info of the response.

	COUNTER - the response’s counter. See Response Counter for more information.

Custom column display names

Each entry in the columns array can be specified either as a string or a column object. Specify the entry as a column object if you would like to have a custom title for the column.

The label key of the column denotes its display name, while the value key denotes the actual value accessor for that column. For example:

{
 "columns": [
 "ID",
 "DATE_LAST_MODIFIED",
 "DATE_CREATED",
 { "label": "Family ID", "value": "COUNTER" },
 "email"
]
}

The above example creates a column whose display name is “Family ID”, but whose value will actually be equal to the COUNTER field of the response.

Unwinding data

Unwinding data allows you to take an array field from each response and display each item in the array field as a separate row. This is especially important for cases such as the following:

	Each response contains a list of participants for a walkathon, and you want a view with one row per participant

	Each response represents a Balavihar registration for an entire family, and you want a view with a list of all adults and a view with a list of all children

To unwind data, specify the path to unwind by in the unwindBy property of the view. When specifying custom columns, you can use the same notation as for non-unwound views to specify column accessors. In each unwound response, however, the unwound path (that previously pointed to the array) will now point to a single array item.

For example, this view:

{
 "id": "adults",
 "displayName": "Adults",
 "unwindBy": "parents",
 "columns": [
 {
 "label": "First Name",
 "value": "parents.name.first"
 },
 {
 "label": "Last Name",
 "value": "parents.name.last"
 },
 {
 "label": "Gender",
 "value": "parents.gender"
 },
 {
 "label": "Mobile Phone",
 "value": "parents.phone"
 },
 {
 "label": "Home Phone",
 "value": "home_phone"
 },
 {
 "label": "Email",
 "value": "parents.email"
 }
]
}

would properly display information for form responses that are structured like this:

{
 "home_phone": "...",
 "parents": [
 {
 "name": {
 "first": "...",
 "last": "..."
 },
 "gender" "...",
 "email": "..."
 },
 {
 "name": {
 "first": "...",
 "last": "..."
 },
 "gender" "...",
 "email": "..."
 }
]
}

Column calculations

The columns object also supports a basic level of calculations. This is used if you want a column to show more than just the value of a single field, but rather a custom calculation of the existing data.

Calculate length

When the calculateLength parameter is set to true, the header object will show the length of the value in the value parameter (whether it is a string or an array). For example, to show the number of participants in a response (if participants is an array of objects), use the following header object:

{
 "label": "Number of participants",
 "value": "participants",
 "calculateLength": true
}

Payment expressions

To show the value of a payment expression, set the queryType to expr and specify the expression value in queryValue . For example, this could be useful for showing the amount a user has paid for a particular item by doing a price calculation.

{
 "label": "Amount paid for registration",
 "queryType": "expr",
 "queryValue": "10 * (age < 18) + 15 * (age >= 18)"
}

Aggregate specific items from paymentInfo

To add up matching values in paymentInfo . set the queryType to paymentInfoItemPaidSum and specify the names of payment info items in queryValue . For example, this could be useful for showing the amount a user has paid for multiple items (such as item 1 + item 2 + discount).

{
 "label": "Amount paid for registration",
 "queryType": "paymentInfoItemPaidSum",
 "queryValue": {
 "names": [
 "Main",
 "Discount"
]
 }
}

This would match items in paymentInfo with name equal to “Main” or “Discount” and sum these values. For example, it would be equal to 49.5 for the following value of paymentInfo:

[
 {"name": "Main", "amount": 50, "quantity": 1, "total": 50},
 {"name": "Sub", "amount": 10, "quantity": 1, "total": 10},
 {"name": "Discount", "amount": -0.5, "quantity": 1, "total": -0.5}
]

Note that using paymentInfoItemPaidSum will also cross-check with amount paid. If a payment is partly paid, then it will reduce the final value accordingly. For example, if the initial sum of paymentInfoItems is equal to 49.5, but if the user has only paid 1/3 of the total amount owed (such as through an installment), the final value will be equal to 49.5 / 3 = 16.5.

If you want to filter only payments in a particular date range, specify both startDate and endDate in queryValue. Both should be in UTC. This will decrease the amounts shown proportionally as well.

{
 "label": "Amount paid for registration",
 "queryType": "paymentInfoItemPaidSum",
 "queryValue": {
 "names": [
 "Main",
 "Discount"
],
 "startDate": "2019-01-01T08:00:01.000Z",
 "endDate": "2020-01-01T08:00:00.000Z"
 }
}

Custom MongoDB aggregation query

To run a custom mongodb aggregate query, set queryType to aggregate as in the below example. The “n” key of the result will end up showing in the column:

{
 "label": "Age Group",
 "queryType": "aggregate",
 "queryValue": [
 {
 "$project": {
 "n": {
 "$switch": {
 "branches": [
 {"case": {"$lt": ["$age", 18]}, "then": "Child" },
 {"case": {"$lt": ["$age", 29]}, "then": "CHYK" },
 {"case": {"$lt": ["$age", 41]}, "then": "Setukari" }
],
 "default": "Adult"
 }
 }
 }
 }
]
}

!!! note
Note that this aggregation will only be applied to a single response. If you want to aggregate multiple responses to get overall statistics, see [Adding a summary view](#Adding a summary view).

Adding a summary view

You can add a summary view which runs aggregate queries in MongoDB and then shows the results of those queries in the responses table view. To do so, add an object in dataOptions.views with type equal to stats. Here is an example:

"views": [{
 "id": "summary",
 "displayName": "Summary",
 "type": "stats",
 "stats": [
 {
 "type": "single",
 "title": "Total number of Yajman families",
 "queryType": "aggregate",
 "queryValue": [
 {"$match": {"value.registrationType": "sponsorship"}},
 { "$group": { "_id": null, "n": { "$sum": 1 } } }
]
 },
 {
 "type": "single",
 "title": "Total money collected",
 "queryType": "aggregate",
 "queryValue": [{ "$group": { "_id": null, "n": { "$sum": "$amount_paid" } } }]
 }
]
}]

The above configuration would then create a summary view that looks like the following:

![summary view](img/summary view.png)

queryType aggregate

When queryType is aggregate , the queryValue will be calculated by evaluating the first value of n in the result set.

This is the only supported queryType value as of now.

type = “single”

When type is “single”, this means that a single value will be shown. The “title” attribute will be the title, and the value will be next to it. Make sure that the aggregate result has a key called “n”.

The above image shows examples of how type = "single" stats look like.

type = “group”

When type is “group”, this means that a table of values will be shown. The “title” attribute is the title of the table. For example, you can use the following value as an item in stats :

{
 "type": "group",
 "title": "Aggregate by city",
 "queryType": "aggregate",
 "queryValue": [
 { "$group": { "_id": "$value.city", "n": { "$sum": 1 } } }
]
}

The above example might render a table that looks like the following:

![stats group](img/stats group.png)

Configuring access

You can provision API keys for each view in dataOptions in order to provide different levels of anonymous access to them. For more information, see Response Access.

 JSON Schema

JSON Schema

The schema specifies the data structure of form responses. It must be a valid [https://json-schema.org/](JSON Schema) object.

!!! note
This section only provides a brief overview of the structure of JSON Schema, and the other pages in this section provide examples of commonly used schemas used in forms. To learn more about JSON Schema in depth, check out the following resources:

- [Learn JSON Schema](https://json-schema.org/learn/getting-started-step-by-step.html)
- [react-jsonschema-form playground](https://rjsf-team.github.io/react-jsonschema-form/)
- [react-jsonschema-form documentation](https://react-jsonschema-form.readthedocs.io/en/latest/)

Simple types

To create a form with a single field, use the following schema:

{
 "type": "string"
}

The other base types other than string include number, boolean, object, array, and null.

Object types

You can create object types by specifying a type object and specifying the list of properties in the properties key. Here is a sample object:

{
 "type: "object",
 "properties": {
 "name": {
 "type": "string"
 },
 "age": {
 "type": "number"
 }
 }
}

Array types

You can create array types by specifying a type array and specifying the list of properties in the items key. Here is a sample array:

{
 "type": "array",
 "items": {
 "type": "string"
 }
}

You can also specify arrays of objects, as follows:

{
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "name": {
 "type": "string"
 },
 "age": {
 "type": "number"
 }
 }
 }
}

 Donation form

Donation form

Preview: CM Mulund Donation Form [https://forms.beta.chinmayamission.com/v2/forms/5dc510c35475a00001102610/]

{
 "description": "Instructions:

",
 "title": "

<div style='width: 100%; text-align: center;'>Donation Registration Form - Sample <h1>Chinmaya Mission Mulund</h1>(Chinmaya Shreeram)",
 "type": "object",
 "definitions": {},
 "properties": {
 "address": {
 "type": "object",
 "properties": {
 "zipcode": {
 "type": "string"
 },
 "state": {
 "type": "string",
 "enum": [
 "AL",
 "AK",
 "AS",
 "AZ",
 "AR",
 "CA",
 "CO",
 "CT",
 "DE",
 "DC",
 "FM",
 "FL",
 "GA",
 "GU",
 "HI",
 "ID",
 "IL",
 "IN",
 "IA",
 "KS",
 "KY",
 "LA",
 "ME",
 "MH",
 "MD",
 "MA",
 "MI",
 "MN",
 "MS",
 "MO",
 "MT",
 "NE",
 "NV",
 "NH",
 "NJ",
 "NM",
 "NY",
 "NC",
 "ND",
 "MP",
 "OH",
 "OK",
 "OR",
 "PW",
 "PA",
 "PR",
 "RI",
 "SC",
 "SD",
 "TN",
 "TX",
 "UT",
 "VT",
 "VI",
 "VA",
 "WA",
 "WV",
 "WI",
 "WY"
]
 },
 "city": {
 "type": "string"
 },
 "line2": {
 "title": "Address Line 2",
 "type": "string"
 },
 "line1": {
 "title": "Address Line 1",
 "type": "string"
 }
 },
 "required": [
 "line1",
 "city",
 "state",
 "zipcode"
]
 },
 "subscribe": {
 "description": "I would like to be informed by email about future events from Chinmaya Mission.",
 "title": "I would like to be informed about future Chinmaya Mission events by email.",
 "type": "boolean"
 },
 "emergency_contact": {
 "title": " ",
 "type": "object",
 "properties": {
 "phone": {
 "type": "string",
 "title": "Emergency Contact Phone"
 },
 "full_name": {
 "type": "string",
 "title": "Emergency Contact Name"
 }
 },
 "required": [
 "full_name",
 "phone"
]
 },
 "participants": {
 "minItems": 1,
 "ui:options": {},
 "title": "Registrants",
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "phone": {
 "type": "string"
 },
 "name": {
 "title": " ",
 "type": "object",
 "properties": {
 "last": {
 "title": "Last Name",
 "type": "string"
 },
 "first": {
 "title": "First Name",
 "type": "string"
 }
 },
 "required": [
 "last",
 "first"
]
 },
 "email": {
 "format": "email",
 "type": "string"
 }
 },
 "required": [
 "name",
 "phone",
 "email"
]
 },
 "uniqueItems": true,
 "description": " "
 }
 },
 "required": [
 "subscribe"
]
}

Walkathon registration

Preview: CMA Tej 2019 Form [https://forms.beta.chinmayamission.com/v2/forms/5c92a5bcb7b12600012e17fe/]

{
 "description": "Welcome to CMA Tej Walkathon 2019:
All fields marked * are required

",
 "title": "Register for CMA Tej 2019",
 "type": "object",
 "required": [
 "contact_name",
 "email",
 "address",
 "acceptTerms",
 "phone"
],
 "definitions": {},
 "properties": {
 "additionalDonation": {
 "description": "All Donations are Tax-Deductible.",
 "title": "CMA Relies On Your Generosity To Support Its Activities For The Community; Please Consider An Additional Donation.",
 "type": "number",
 "minimum": 0
 },
 "contact_name": {
 "title": "Contact Name",
 "type": "object",
 "required": [
 "first",
 "last"
],
 "properties": {
 "last": {
 "title": "Contact Last Name",
 "type": "string"
 },
 "first": {
 "title": "Contact First Name",
 "type": "string"
 }
 }
 },
 "howHeard": {
 "type": "string",
 "title": "Where did you hear about CMA Tej Walkathon?"
 },
 "cause": {
 "type": "string",
 "enum": [
 "Micro banking and self-help groups",
 "Mahila mandals",
 "Yuva and Yuvati Mandals",
 "Balwadis and Balveers",
 "Managing and sustaining natural resources",
 "Developmental activities",
 "Counselling",
 "Health Awareness camps",
 "Literacy Drives",
 "Income Generation",
 "Social Justice and Informal Legal Assistance"
],
 "title": "Which cause would you like to support?"
 },
 "couponCode": {
 "type": "string",
 "title": "Coupon Code (For Sponsors only)"
 },
 "address": {
 "type": "object",
 "required": [
 "zipcode",
 "state",
 "city",
 "line1"
],
 "properties": {
 "zipcode": {
 "type": "string"
 },
 "state": {
 "type": "string"
 },
 "city": {
 "type": "string"
 },
 "line2": {
 "title": "Address Line 2",
 "type": "string"
 },
 "line1": {
 "title": "Address Line 1",
 "type": "string"
 }
 }
 },
 "acceptTerms": {
 "description": " I agree to the Following Terms and Conditions: Submission of this form constitutes an acknowledgement that I am in proper physical condition to participate in this event. Further, I waive all claims for myself and my heirs against Chinmaya Mission Alpharetta, CORD, it volunteers, sponsors of Chinmaya Tej Walkathon 2018, and any other groups or individuals associated with this event for injury or illness including death that may result from participation in this event. In addition, I assent to the use of any photo or video for any purpose.",
 "title": "Terms and Conditions",
 "type": "boolean"
 },
 "email": {
 "format": "email",
 "type": "string"
 },
 "phone": {
 "format": "phone",
 "type": "string",
 "title": "Phone Number"
 },
 "participants": {
 "minItems": 1,
 "title": "Participants",
 "type": "array",
 "items": {
 "required": [
 "name",
 "age",
 "gender",
 "race",
 "shirt_size"
],
 "type": "object",
 "properties": {
 "gender": {
 "type": "string",
 "enum": [
 "M",
 "F"
]
 },
 "shirt_size": {
 "title": "T-Shirt Size",
 "type": "string",
 "enum": [
 "Youth S",
 "Youth M",
 "Youth L",
 "Adult S",
 "Adult M",
 "Adult L",
 "Adult XL"
]
 },
 "name": {
 "title": "",
 "required": [
 "first",
 "last"
],
 "type": "object",
 "properties": {
 "last": {
 "title": "Last Name",
 "type": "string"
 },
 "first": {
 "title": "First Name",
 "type": "string"
 }
 }
 },
 "age": {
 "type": "string",
 "enumNames": [
 "Adult - Early Bird until April 28th (13 years and above) - $20",
 "Child - Early Bird until April 28th (6 - 12 years) - $15",
 "Adult- Regular (13 years and above) - $25",
 "Child - Regular (6 - 12 years) - $20"
],
 "enum": [
 "AdultEarly",
 "ChildEarly",
 "AdultRegular",
 "ChildRegular"
]
 }
 }
 }
 }
 }
}

 Customizing buttons

Customizing buttons

You can change the add button text and remove button text as follows:

"participants": {
 "type": "array",
 "items": [...],
 "ui:cff:addButtonText": "Add the person",
 "ui:cff:removeButtonText": "Remove! Custom text!",
}

You can remove the add buttons this way:

"participants": {
 "ui:cff:showAddButton": false
}

Showing a “number of items” field

You can create a “number of items” field so that the user enters in the number of items in an array (as opposed to clicking on buttons to add/remove). First, add this in the uiSchema to the array element:

 "participants": {
 "ui:cff:showArrayNumItems": true
 },

Then it will show up like this:

[image: https://user-images.githubusercontent.com/1689183/59124225-005da880-8914-11e9-81c1-24df16a1dbee.png]image

It will have a dropdown from minItems and maxItems, both defined in the schema.

You can also define the title (instead of “Number of participants” with the following option):

 "participants": {
 "ui:cff:showArrayNumItems": true,
 "ui:cff:arrayNumItemsTitle": "Enter the number of elements in the array"
 },

Specifying ui:cff:arrayNumItemsTitle in the schema will override that which is specified in the uiSchema’s ui:cff:arrayNumItemsTitle.

 Custom configuration options

 The uiSchema is used to configure the look and feel of the form. The format of the uiSchema is {[key]: [value object]}, where [key] is the property name and [value object] is the object describing the styling of that particular property.

All uiSchema options supported by react-jsonschema-form are also supported here. We also have additional widgets and options; all these options are prefixed by cff:.

Custom configuration options

Name	Description	Example Usage
———–	———–	——————-
ui:cff:autocomplete	Should be set on the root of the uiSchema. If set to true, enables the autocomplete attribute on the HTML form.	{"ui:cff:autocomplete": true }
ui:cff:validate	Can be set to enable custom validation based on expressions. See Custom Validation for more details.	
ui:cff:submitButtonText	Should be set on the root of the uiSchema. If set, overrides the default submit button text.	{"ui:cff:submitButtonText": "Register" }
ui:cff:disableModifExistingItems	Can be set on array fields. If set to true, disables modification of existing items in the array.	{"ui:cff:disableModifExistingItems": true }
ui:cff:showArrayNumItems	Set on array fields. If set to true, shows a “number of items” dropdown before the array.	{"ui:cff:showArrayNumItems": true }
ui:cff:arrayNumItemsTitle	Set on array fields and only has an effect when ui:cff:showArrayNumItems is true. If set, customizes the title shown for the “number of items” dropdown.	{"ui:cff:arrayNumItemsTitle": "Number of participants" }
ui:cff:arrayItemTitles	Set on array fields. Should be set to an array. If set, each item in the array field will have its title set to the corresponding item in ui:cff:arrayItemTitles.	{"ui:cff:arrayItemTitles": ["Parent", "Spouse"] }
ui:cff:removeButtonText	Set on array fields. If set, overrides the default “remove” button text.	{"ui:cff:removeButtonText": "Remove participant" }
ui:cff:addButtonText	Set on array fields. If set, overrides the default “add” button text.	{"ui:cff:addButtonText": "Add participant" }
ui:cff:showAddButton	Set on array fields. If set to false, the add button is hidden.	{"ui:cff:showAddButton": false }
ui:cff:background	Set on the root schema. Can be set to a color, e.g. #ff0000, or anything that the CSS background [https://developer.mozilla.org/en-US/docs/Web/CSS/background] property accepts. If set, overrides the default background of the form.	{"ui:cff:background": "white" }

Custom widgets

Name	Description	Example Usage
———–	———–	——————-
cff:smallTextbox	Small textbox	{"ui:widget": "cff:smallTextbox"}
cff:money	Money widget	{"ui:widget": "cff:money"}
cff:couponCode	Coupon code	{"ui:widget": "cff:couponCode"}
cff:confirm	Copies a textbox to give a “confirm” widget. Useful for, example, creating “email” and “confirm email” fields.	{"ui:widget": "cff:confirm"}
cff:jsonEditor	JSON editor	{"ui:widget": "cff:jsonEditor"}
cff:conditionalHiddenRadio	Radio widget, but hides if schema.readOnly or schema.const are true	{"ui:widget": "cff:conditionalHiddenRadio"}
cff:infoboxRadio	Shows a red “i” sign next to the label right before a radio widget. Hovering on the “i” shows an infobox, whose contents are equal to schema["cff:radioDescription"].	{"ui:widget": "cff:infoboxRadio"}
cff:infoboxSelect	Shows a red “i” sign next to the label right before a select widget. Hovering on the “i” shows an infobox, whose contents are equal to schema["cff:radioDescription"].	{"ui:widget": "cff:infoboxSelect"}
cff:removed	Renders null (this is different from the hidden widget, which just renders an <input type="hidden" /> tag)	{"ui:widget": "cff:removed"}

Custom fields

Unlike widgets, which only work on base types (non-objects or arrays), fields can work on object types as well.

Name	Description	Example Usage
———–	———–	——————-
cff:sameAs	Shows a checkbox before the field that says “same as” another field. When this checkbox is checked, the data from the other field will be copied into this field.	{"ui:field": "cff:sameAs", "ui:cff:sameAsFieldName": "first name", "ui:cff:sameAsFieldPath": "name.first"}
cff:autoPopulate	Makes a query to a HTTP endpoint to fetch enum options, which are then used to populate the results of the current field.	{"ui:field": "cff:autoPopulate", "ui:cff:autoPopulateEndpoint": "https://www.chinmayamission.com/wp-json/gcmw/v1/centres", "ui:cff:autoPopulateTitleAccessor": "name"}
cff:dynamicEnum	Fetches a set of enum options based on form data. The path of the specified form data comes from ui:cff:dynamicEnumDataAccessor.	{"ui:field": "cff:dynamicEnum", "ui:cff:dynamicEnumDataAccessor": "names" }
cff:addressAutocomplete	Shows a textbox where the user can type a location, with suggestions from the Google Maps API.	{"ui:field": "cff:addressAutocomplete"}
cff:removed	Renders null	{"ui:field": "cff:removed"}

 <no title>

 Custom validation can be performed using the ui:cff:validate option in the uiSchema.

{
 "ui:cff:validate": [
 {
 "if": "phone == 1231231233",
 "then": "Phone Number cannot be '1231231233'."
 }
]
}

 Usage

 Address autocomplete field - shows a textbox which allows a user to type in an address, with suggestions from the Google Maps API. Once the user selects the location, it will auto-fill the textboxes for line 1, line 2, etc.

Usage

Schema:

{
 "address": {
 "type": "object",
 "properties": {
 "line1": {"type": "string"},
 "line2": {"type": "string"},
 "city": {"type": "string"},
 "state": {"type": "string"},
 "zipcode": {"type": "string"},
 "country": {"type": "string"}
 }
 }
}

uiSchema:

{
 "address": {
 "ui:field": "cff:addressAutocomplete"
 }
}

Specify location type

You can also specify cff:locationType in ui:options in order to change the types of suggestions that show up. By default, the suggestions are addresses. To change, set the value equal to cities and you will get only city results:

{
 "address": {
 "ui:field": "cff:addressAutocomplete",
 "ui:options": {
 "cff:locationType": "cities"
 }
 }
}

[image: https://user-images.githubusercontent.com/1689183/63220158-cfc99480-c136-11e9-9cc8-4de40bc6f63a.png]image

Calculate distances

You may want to calculate distances between the entered address and the location. You must use a schema with the distance key – here, the distance to the closest location will be in meters:

{
 "address": {
 "type": "object",
 "properties": {
 "line1": {"type": "string"},
 "line2": {"type": "string"},
 "city": {"type": "string"},
 "state": {"type": "string"},
 "zipcode": {"type": "string"},
 "country": {"type": "string"},
 "distance": {"type": "number"}
 }
 }
}

Then, in the uiSchema, pass a list of locations along with their associated latitude, longitudes:

{
 "address": {
 "ui:field": "cff:addressAutocomplete",
 "ui:options": {
 "cff:locationDistance": {
 "locations": [
 {
 "lat": "38.8977",
 "lng": "77.0365"
 },
 {
 "lat": "38.8977",
 "lng": "-77.0365"
 }
 },
 "distance": {
 "ui:widget": "hidden"
 }
 }
}

Finally, when you enter your address, it will calculate the distance and then save it in the distance field. You can use this as a conditional schema in order to do specific validation. For example, to restrict registration to 50 miles (80467 meters), use:

{
 "if": {
 "properties": {
 "address": {
 "properties": {
 "distance": {
 "minimum": 80467
 }
 }
 }
 }
 },
 "then": {
 "properties": {
 "name": {"type": "string"}
 }
 },
 "else": {
 "properties": {
 "notEligible": {
 "type": "boolean",
 "const": true,
 "default": true
 },
 "notEligibleMessage": {
 "title": "Not Eligible",
 "description": "You are not eligible for E-Balavihar because you are within 50 miles of the closest Balavihar center. Please submit this form to continue.",
 "type": "null"
 }
 }
 }
}

Get top N closest locations

You can have the N closest locations saved to the data by adding in a closestLocations key.

{
 "address": {
 "type": "object",
 "properties": {
 "line1": {"type": "string"},
 "line2": {"type": "string"},
 "city": {"type": "string"},
 "state": {"type": "string"},
 "zipcode": {"type": "string"},
 "country": {"type": "string"},
 "closestLocations": {"type": "array", "items": {"type": "object", "additionalProperties": true}}
 },
 "distance": {
 "ui:widget": "hidden"
 },
 "closestLocations": {
 "ui:widget": "hidden"
 }
 }
}

Then, in the uiSchema, pass a list of locations along with their associated latitude, longitudes, and other data you might want to be passed into the form data. Also set the saveNClosestLocations prop:

{
 "address": {
 "ui:field": "cff:addressAutocomplete",
 "ui:options": {
 "cff:locationDistance": {
 "saveNClosestLocations": 5,
 "locations": [
 {
 "lat": "38.8977",
 "lng": "77.0365",
 "street1": "123 ABC Street"
 },
 {
 "lat": "38.8977",
 "lng": "-77.0365",
 "street1": "124 ABC Street"
 }
 }
 }
}

Finally, when you enter your address, it will calculate the distance (in meters) and then save it in the distance field, and save the 5 closest locations to closestLocations (or whatever number is set in saveNClosestLocations). Each element in closestLocations will also have a distance key with the specific distance of that location.

You can specify closestLocationsFilter to run a custom filter on the locations returned. The final list of locations will only have locations that pass this filter. The value of closestLocationsFilter should be a JSON Schema. For example, to filter out locations to only include locations that are shorter than 72420 meters (45 miles) away:

{
 ...
 "cff:locationDistance": {
 "saveNClosestLocations": 5,
 "closestLocationsFilter": {
 "properties": {
 "distance": {
 "maximum": 72420
 }
 }
 }
 ...
}

 Usage

 Auto populate allows fetching data from an asynchronous endpoint.

Usage

in the schema:

{
 "type": "object",
 "properties": {
 "name": {"type": "string"},
 "address1": {"type": "string"},
 "address2": {"type": "string"},
 "state": {"type": "string"},
 "zip": {"type": "string"},
 "city": {"type": "string"},
 "country": {"type": "string"}
 }
}

in the ui schema:

{
 "ui:field": "cff:autoPopulate",
 "ui:options": {
 "cff:autoPopulateEndpoint": "https://www.chinmayamission.com/wp-json/gcmw/v1/centres",
 "cff:autoPopulateTitleAccessor": "name"
 }
}

This will make a query to https://www.chinmayamission.com/wp-json/gcmw/v1/centres and load the options from there, sort them alphabetically, and then create a widget so that people can select from that list.

You can also only show results that match a schema by specifying cff:autoPopulateMatchSchema:

{
 "ui:field": "cff:autoPopulate",
 "ui:options": {
 "cff:autoPopulateEndpoint": "https://www.chinmayamission.com/wp-json/gcmw/v1/centres",
 "cff:autoPopulateTitleAccessor": "name",
 "cff:autoPopulateMatchSchema": {
 "type": "object",
 "properties": {
 "Type": {"const": "centre"}
 }
 }
 }
}

 Usage

 The dynamic enum field allows for the enum options of a field to be populated dynamically from the data in another form.

Usage

Imagine you have an array of centres that you would like people to enter in in the form, in the centres key. However, you have another spot in the form, the location field, which you would like to show a select box with dynamically populated options based on the centres you chose. In the schema:

{
 "centres": {
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "name": {"type": "string"},
 "location": {"type": "string"}
 }
 }
 },
 "location": {"type": "string"}
}

in the ui schema:

{
 "location": {
 "ui:field": "cff:dynamicEnum",
 "ui:options": {
 "cff:dynamicEnumDataAccessor": "centres.name"
 }
 }
}

We see that cff:dynamicEnumDataAccessor is used to access the data from which the options are populated. Currently, this accessor allows the same notation as in lodash’s get function; it also supports, to a limited level, getting properties of objects in arrays one level deep.

 Usage

 The cff:sameAs field shows a checkbox before the field that says “same as” another field. When this checkbox is checked, the data from the other field will be copied into this field.

The field path of the other field is specified by ui:cff:sameAsFieldPath, and the text that shows up after “same as” is specified by ui:cff:sameAsFieldName.

This will render a checkbox saying something like, “same as first participant’s name”.

Usage

in the ui schema:

{
 "ui:field": "cff:sameAs",
 "ui:options": {
 "cff:sameAsFieldPath": "contact_name",
 "cff:sameAsFieldName": "contact name"
 }
}

If you want an array to show sameAs only for the first one, add the following to the uiSchema in the array:

{
 "classNames": "ccmt-cff-array-sameAs-showFirst"
}

 Infobox select

 Infobox radio widget is used in order to show the cff:radioDescription value only when the user mouses over the “i” icons.

Use case (MSC 2020) - show info icons after each radio option. On hover, the info shows up.

[image: https://user-images.githubusercontent.com/1689183/59735156-3a2e8900-9209-11e9-8d3a-6ecb272308c5.png]image

To use, use in uiSchema:

"registrationType": {
 "ui:widget": "cff:infoboxRadio",
 "classNames": "col-12"
}

In the schema, include the description as the HTML:

"registrationType": {
 "title": "Type of Registration",
 "type": "string",
 "cff:radioDescription": "<table dir='ltr' border='0' cellspacing='0' cellpadding='0' style='background: white; border: 1px solid black; padding: 20px;><colgroup><col width='258' /><col width='202' /><col width='179' /><col width='164' /></colgroup> <tbody> <tr> <td> </td> <td colspan='3' rowspan='1' align='center'>Yajman Levels</td> </tr> <tr> <td> </td> <td>Silicon</td> <td>Platinum</td> <td>Gold</td> </tr> <tr> <td>Levels</td> <td>$15,000</td> <td>$10,000</td> <td>$5,000</td> </tr> <tr> <td>Room type (included)</td> <td>Upgraded room</td> <td>Upgraded room</td> <td>Standard room</td> </tr> <tr> <td>Number of guests included</td> <td>4</td> <td>2</td> <td>1</td> </tr> <tr> <td>Sponsorship of Aarti</td> <td>One time 3 days</td> <td>One time 2 days</td> <td>One time any day</td> </tr> <tr> <td>Reserved Seating for all discourses</td> <td>Yes</td> <td>Yes</td> <td>Yes</td> </tr> <tr> <td>Bhiksha with Swami Swaroopananda</td> <td>One day (B or L or D)</td> <td>One day (B or L or D)</td> <td>One day (B or L or D)</td> </tr> <tr> <td>Dinner with Swamijis</td> <td>One day (B or L or D)</td> <td>One day (B or L or D)</td> <td>No</td> </tr> <tr> <td>Mahasamadhi Day Pooja</td> <td>Included</td> <td>Included</td> <td>No</td> </tr> <tr> <td>Participation in Opening Procession</td> <td>Yes</td> <td>Yes</td> <td>Yes</td> </tr> <tr> <td>Gifts</td> <td>Yes</td> <td>Yes</td> <td>No</td> </tr> <tr> <td>Tax-Deductible portion</td> <td>$11,000.00</td> <td>$6,500.00</td> <td>$2,500.00<